机器学习是万能的吗?AI落地有哪些先决条件?

1.引言

入门机器学习或从事其相关工作前,不知道你思考过如下2个问题吗:

  • 1) 机器学习是万能的吗?
  • 2) 工业界要想尽可能落地机器学习,需要满足哪些先决条件?

这段时间,有幸聆听了几场大牛报告,一位是第四范式,目前工业界应用AI经验最丰富的之一,曾经在百度与吴恩达共同推进AI在工业界的落地;另一位来自学术界,新加坡国立大学的,最近刚拿到两个项目,合计一共1.5亿人民币。听智者说,强于读万卷书!今天结合他们的报告,在这里总结与大家一起分享,他们的报告实际上完美地解决了以上两个问题。

2.机器学习是万能的吗?

机器学习包括深度学习吗?当然。机器学习是当前最火的人工智能领域的主要子领域之一,它真的是一项革命性的技术创造,记得曾有人说,AI的兴起可以把之前所有的问题再重新研究一遍,足以可见它巨大的创造力,有可能颠覆某项领域的现有技术 ……

那么,人们不禁会问机器学习可以解决一切问题吗,如果是这样,所有国家的科学家去深入研究AI理论,工业界的大牛去将这些理论落地,一场革命诞生。

真的是这样吗?下面引用新加坡国立的这位教授举的例子来说明这个问题。

电商行业仓库选址是一个很重要的问题,设计良好的选址方案,可以为公司节省亿级的物流成本。为了使用机器学习的技术,先从全国各地选取建仓的数据,模型考虑了几百个特征(包括时间刻画等多个维度),是一个有监督学习任务,训练好模型后,再输入要预测的建仓地区的相关数据到模型中,最后决策一个得分最高的建仓位置。

就在建仓1个月后,当地政府决定重新优化当地的路网系统,施工开始不久,建仓的物流成本每日剧增,公司不得不决定重新再在当地其他位置选址建仓。等再拿原来的模型预测选址方案时,发现缺少大量的最新路网下的交通数据,模型变为无米之炊,机器学习模型此时无能为力

后来,新加坡政府找到了国立大学的这位教授,他们团队擅长做仿真优化,模型不是基于历史数据去做预测,所以,很快他们拿仿真系统预测出选址的方案,然后建仓地址根据仿真结果投入建设,很快物流成本降低。

由此可见,机器学习模型是基于已发生的数据做出的预测模型,一旦出现某些异常情况,导致数据不再遵循原来的规律时,预测就会变得不准确,并且因为缺失最新状况下的数据,最后只能辅助于仿真优化方法解决问题

机器学习是基于过去的预测,仿真是基于未来的预测。

机器学习和仿真优化结合才是解决问题的最全面方法论。

3. 机器学习落地,先决条件有哪些?

第四范式工业界应用AI落地的大牛,总结了以下几个主要因素:

1)问题的定义、边界要明确清晰。AlphaGo做的是围棋游戏,游戏是在 19×19 的棋盘上,黑、白两方轮流下子。这个问题可以说是定义得非常封闭清晰了,但是,如果变成一个开放的问题,变成 29×29 的棋盘,变成黑、白、灰三方下棋,都会导致AlphaGo模型的立即失效。

同样,以上选址模型是在基于已有路网不变情况下预测才会准确,一旦突发环境改变导致模型预测失效。

第二,计算资源。近些年算法虽然有很大的进步,但计算资源也是产生智能的关键。最近业界在分布式计算上的成功,让我们相对于几十年前有了飞跃的基础。Google Adwords的模型仅仅特征数就达到万亿级,如果所有列的类型定义为float,光存储这些特征列就得1T,再连上海量的数据,想想就头大,没有大量的分布式集群的强大计算能力,算法就是个空壳。

计算资源和分布式技术,才是AI真正落地的有一个关键。

第三,顶尖的科学家。这些科学家分两类:数据科学家和人工智能科学家。正是这些科学家帮助推进AI,创造新的理论和算法。

数据科学家关乎数据和特征工程,人工智能科学家关乎AI算法。

第四,大数据。AlphaGo 的成功考得是 KGS 上有数十万盘高手对战的棋谱数据,没有这些数据 AlphaGo 绝对不可能这么短的时间内打败人类。

机器学习 = 数据 + 特征 + 模型

第五,外部反馈。算法要不断的有外部输入,知道我们在什么样的情况、算法做出什么样的行为下,外部给出的反馈是什么,这样才能促进提高,比方说需要 AlphaGo 不断地进行对弈,并且告诉它对弈的输赢。

这些要素总结起来只有三点

1) 技术,计算资源,大数据,算法支持; 2) 业务,边界要清晰,业务有反馈; 3) 人,科学家,相关熟悉业务的人。

所以如果一个 AI 要成功的话总结起来三点,要关注技术、要关注业务、要关注人。

4. 总结

机器学习基于历史数据且未来符合过去的假定下才可能准确的技术,要落地靠技术,业务,和人。

原文发布于微信公众号 - Python与机器学习算法频道(alg-channel)

原文发表时间:2018-08-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

重磅清单 | 当前AI领域尚未攻克的29个难题及进展评估(附百篇文献)

2123
来自专栏AI科技大本营的专栏

你走过最长的路,就是机器学习过程中的弯路

营长的一位转型AI的朋友,最近对营长抱怨,“走过的最远的路,就是机器学习过程中的弯路”,然后开始各种blablabla,从论文的坑,到模型的坑,再到培训的坑.....

37210
来自专栏新智元

2016 机器学习之路:一年从无到有掌握机器学习

【新智元导读】程序员 Per Harald Borgen 在 Medium 刊文,介绍了他在一年的时间里,从入门到掌握机器学习的历程。Borgen 表示,即使没...

3669
来自专栏AI科技评论

纽约大学陈溪解析机器学习和智能决策:从一个高峰到另一个高峰还有多远?

6月24日下午,钛媒体和杉数科技主办的2017 AI 大师论坛在京举行,论坛邀请了五位算法优化、机器学习领域的顶尖教授、学者出席并发表学术演讲。论坛上,五位科学...

3539
来自专栏PPV课数据科学社区

CCAI 2017 | 自然语言处理的十个发展趋势

近日,由中国人工智能学会、阿里巴巴集团 & 蚂蚁金服主办,CSDN、中国科学院自动化研究所承办的第三届中国人工智能大会(CCAI 2017)在杭州国际会议中心盛...

2555
来自专栏数据科学与人工智能

自然语言处理的十个发展趋势

近日,由中国人工智能学会、阿里巴巴集团 & 蚂蚁金服主办,CSDN、中国科学院自动化研究所承办的第三届中国人工智能大会(CCAI 2017)在杭州国际会议中心盛...

3634
来自专栏人工智能头条

大伽「趣」说AI:腾讯云在多个场景中的AI落地实践

AI技术已经家喻户晓。不论是移动终端设备,还是企业系统平台,都开始集成AI能力,现阶段看,AI融合到各个行业的潜力非常巨大,能够在众多场景中发挥作用,比如云计算...

1614
来自专栏人工智能头条

知人知面需知心——论人工智能技术在推荐系统中的应用

2295
来自专栏云加头条

大伽「趣」说AI:腾讯云在多个场景中的AI落地实践

导读:7月28日,腾讯云在北京举办云+社区沙龙,邀请来自腾讯与四川云检科技的五位AI技术专家,分享他们在专业领域的AI开发经验,帮助开发者在具体行业场景中实践A...

2896
来自专栏华章科技

一文看懂人工智能:原理,技术和未来

【新智元导读】Facebook 官方博客更新,FAIR 主管、深度学习代表人物 Yann LeCun 与同事撰文,深入浅出解释什么是人工智能、人工智能如何影响我...

1182

扫码关注云+社区

领取腾讯云代金券