前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >距离产生美?k近邻算法python实现

距离产生美?k近邻算法python实现

作者头像
红色石头
发布2019-05-25 23:16:43
4370
发布2019-05-25 23:16:43
举报

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/red_stone1/article/details/80607960

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill)

这里写图片描述
这里写图片描述

1. 什么是k近邻算法?

k最近邻(k-Nearest Neighbor,kNN)分类算法是一个比较成熟也是最简单的机器学习(Machine Learning)算法之一。该方法的思路是:如果一个样本在特征空间中与k个实例最为相似(即特征空间中最邻近),那么这k个实例中大多数属于哪个类别,则该样本也属于这个类别。

其中,计算样本与其他实例的相似性一般采用距离衡量法。离得越近越相似,离得越远越不相似。

这里写图片描述
这里写图片描述

如上图所示,k=3,距离绿色样本最近的3个实例中(圆圈内),有两个是红色三角形(正类)、一个是蓝色正方形(负类)。则该样本属于红色三角形(正类)。

2. k近邻算法的本质

我们知道,一般机器学习算法包括两个过程:训练过程和测试过程。训练过程通过使用机器学习算法在训练样本上迭代训练,得到较好的机器学习模型;测试过程是使用测试数据来验证模型的好坏,通过正确率来呈现。kNN算法的本质是在训练过程中,它将所有训练样本的输入和输出标签(label)都存储起来。测试过程中,计算测试样本与每个训练样本的距离,选取与测试样本距离最近的前k个训练样本。然后对着k个训练样本的label进行投票,票数最多的那一类别即为测试样本所归类。

其实,kNN算法非常简单,可以说在训练过程中基本没有算法参与,只有存储训练样本。可以说KNN算法实际上是一种识记类算法。因此,kNN虽然简单,但是其明显包含了以下几个缺点:

  • 整个训练过程需要将所有的训练样本极其输出label存储起来,因此,空间成本很大。
  • 测试过程中,每个测试样本都需要与所有的训练样本进行比较,运行时间成本很大。
  • 采用距离比较的方式,分类准确率不高。

好了,介绍完了kNN算法的理论知识之后,我相信大家都跃跃欲试了。接下来,我们就来手把手教大家使用Python实现一个kNN分类问题,进入机器学习实战大门。开始吧~

3. 数据准备

首先,数据集我们选择经典的鸢尾花卉数据集(Iris)。Iris数据集每个样本x包含了花萼长度(sepal length)、花萼宽度(sepal width)、花瓣长度(petal length)、花瓣宽度(petal width)四个特征。样本标签y共有三类,分别是Setosa,Versicolor和Virginica。Iris数据集总共包含150个样本,每个类别由50个样本,整体构成一个150行5列的二维表,如下图展示了10个样本:

这里写图片描述
这里写图片描述

如何获取这些数据呢?很简单,我们可以使用代码,直接从网上下载,下载后的数据集存放在’../data/’目录下。

代码语言:javascript
复制
import numpy as np
import pandas as pd

data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)    # 下载iris数据集
#data = pd.read_csv('./data/iris.data.csv', header=None)
data.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'species']    # 特征及类别名称

然后,我们将三个类别的数据分别提取出来,setosa、versicolor、virginica分别用0、1、2来表示。

代码语言:javascript
复制
X = data.iloc[0:150, 0:4].values
y = data.iloc[0:150, 4].values
y[y == 'Iris-setosa'] = 0                                 # Iris-setosa 输出label用0表示
y[y == 'Iris-versicolor'] = 1                             # Iris-versicolor 输出label用1表示
y[y == 'Iris-virginica'] = 2                              # Iris-virginica 输出label用2表示
X_setosa, y_setosa = X[0:50], y[0:50]                     # Iris-setosa 4个特征
X_versicolor, y_versicolor = X[50:100], y[50:100]         # Iris-versicolor 4个特征
X_virginica, y_virginica = X[100:150], y[100:150]         # Iris-virginica 4个特征

接下来看一下三种类别不同特征的空间分布。为了可视性,我们只选择sepal length和petal length两个特征,在二维平面上作图。

代码语言:javascript
复制
import matplotlib.pyplot as plt

plt.scatter(X_setosa[:, 0], X_setosa[:, 2], color='red', marker='o', label='setosa')
plt.scatter(X_versicolor[:, 0], X_versicolor[:, 2], color='blue', marker='^', label='versicolor')
plt.scatter(X_virginica[:, 0], X_virginica[:, 2], color='green', marker='s', label='virginica')
plt.xlabel('sepal length')
plt.ylabel('petal length')
plt.legend(loc = 'upper left')
plt.show()
这里写图片描述
这里写图片描述

由上图可见,三个类别之间是有较明显区别的。

接下来,我们要将每个类别的所有样本分成训练样本(training set)、验证集(validation set)和测试样本(test set),各占所有样本的比例分别为60%,20%,20%。

代码语言:javascript
复制
# training set
X_setosa_train = X_setosa[:30, :]
y_setosa_train = y_setosa[:30]
X_versicolor_train = X_versicolor[:30, :]
y_versicolor_train = y_versicolor[:30]
X_virginica_train = X_virginica[:30, :]
y_virginica_train = y_virginica[:30]
X_train = np.vstack([X_setosa_train, X_versicolor_train, X_virginica_train])
y_train = np.hstack([y_setosa_train, y_versicolor_train, y_virginica_train])

# validation set
X_setosa_val = X_setosa[30:40, :]
y_setosa_val = y_setosa[30:40]
X_versicolor_val = X_versicolor[30:40, :]
y_versicolor_val = y_versicolor[30:40]
X_virginica_val = X_virginica[30:40, :]
y_virginica_val = y_virginica[30:40]
X_val = np.vstack([X_setosa_val, X_versicolor_val, X_virginica_val])
y_val = np.hstack([y_setosa_val, y_versicolor_val, y_virginica_val])

# test set
X_setosa_test = X_setosa[40:50, :]
y_setosa_test = y_setosa[40:50]
X_versicolor_test = X_versicolor[40:50, :]
y_versicolor_test = y_versicolor[40:50]
X_virginica_test = X_virginica[40:50, :]
y_virginica_test = y_virginica[40:50]
X_test = np.vstack([X_setosa_test, X_versicolor_test, X_virginica_test])
y_test = np.hstack([y_setosa_test, y_versicolor_test, y_virginica_test])

4. kNN训练函数和预测函数

kNN的训练过程实际上是一种数据标类、数据存储的过程,不包含机器学习算法。首先我们需要定义一个类(class)来实现KNN算法模块。该类的初始化定义为:

代码语言:javascript
复制
class KNearestNeighbor(object):
   def __init__(self):
       pass

然后,在KNearestNeighbor类中定义训练函数,训练函数保存所有训练样本。

代码语言:javascript
复制
def train(self, X, y):
   self.X_train = X
   self.y_train = y

kNN的测试过程是核心部分。其中,有两点需要注意:

  • 衡量距离的方式
  • k值的选择

kNN距离衡量一般有两种方式:L1距离和L2距离。

L1距离的计算公式为:

d1(I1,I2)=∑p|Ip1−Ip2|d1(I1,I2)=∑p|I1p−I2p|

d1(I_1,I_2)=\sum_p|I_1^p-I_2^p|

其中,I1和I2分别表示两个样本,p表示特征维度。

L2距离的计算公式为:

d2(I1,I2)=∑p(Ip1−Ip2)2−−−−−−−−−−−√d2(I1,I2)=∑p(I1p−I2p)2

d2(I_1,I_2)=\sqrt{\sum_p(I_1^p-I_2^p)^2}

一般来说,L1距离和L2距离都比较常用。需要注意的是,如果两个样本距离越大,那么使用L2会继续扩大距离,即对距离大的情况惩罚性越大。反过来说,如果两个样本距离较小,那么使用L2会缩小距离,减小惩罚。也就是说,如果想要放大两个样本之间的不同,使用L2距离会更好一些。这里,我们使用最常用的L2距离。

kNN中的k值选择至关重要,不同的k值也许能归属到不同的类别中,例如在下图中,k=3,则判定绿色实例属于红色三角形类别。

这里写图片描述
这里写图片描述

但是,如果令k=5,如下图所示,则会判定绿色实例属于蓝色正方形类别。

这里写图片描述
这里写图片描述

一般来说,k值太小会使模型过于复杂,造成过拟合(overfitting);k值太大会使模型分类模糊,造成欠拟合(underfitting)。实际应用中,我们可以选择不同的k值,通过验证来决定K值大小。代码中,我们将k设定为可调参数。

在KNearestNeighbor类中定义预测函数:

代码语言:javascript
复制
def predict(self, X, k=1)
   # 计算L2距离
   num_test = X.shape[0]
   num_train = self.X_train.shape[0]
   dists = np.zeros((num_test, num_train))    # 初始化距离函数
   # because(X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train, so
   d1 = -2 * np.dot(X, self.X_train.T)    # shape (num_test, num_train)
   d2 = np.sum(np.square(X), axis=1, keepdims=True)    # shape (num_test, 1)
   d3 = np.sum(np.square(self.X_train), axis=1)    # shape (1, num_train)
   dist = np.sqrt(d1 + d2 + d3)
   # 根据K值,选择最可能属于的类别
   y_pred = np.zeros(num_test)
   for i in range(num_test):
       dist_k_min = np.argsort(dist[i])[:k]    # 最近邻k个实例位置
       y_kclose = self.y_train[dist_k_min]     # 最近邻k个实例对应的标签
       y_pred[i] = np.argmax(np.bincount(y_kclose))    # 找出k个标签中从属类别最多的作为预测类别

   return y_pred

KNearestNeighbor类的完整定义代码如下:

代码语言:javascript
复制
class KNearestNeighbor(object):
   def __init__(self):
       pass

   # 训练函数
   def train(self, X, y):
       self.X_train = X
       self.y_train = y

   # 预测函数
   def predict(self, X, k=1):
       # 计算L2距离
       num_test = X.shape[0]
       num_train = self.X_train.shape[0]
       dists = np.zeros((num_test, num_train))    # 初始化距离函数
       # because(X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train, so
       d1 = -2 * np.dot(X, self.X_train.T)    # shape (num_test, num_train)
       d2 = np.sum(np.square(X), axis=1, keepdims=True)    # shape (num_test, 1)
       d3 = np.sum(np.square(self.X_train), axis=1)    # shape (1, num_train)
       dist = np.sqrt(d1 + d2 + d3)
       # 根据K值,选择最可能属于的类别
       y_pred = np.zeros(num_test)
       for i in range(num_test):
           dist_k_min = np.argsort(dist[i])[:k]    # 最近邻k个实例位置
           y_kclose = self.y_train[dist_k_min]     # 最近邻k个实例对应的标签
           y_pred[i] = np.argmax(np.bincount(y_kclose.tolist()))    # 找出k个标签中从属类别最多的作为预测类别

       return y_pred

5. 训练和预测

首先,创建一个KnearestNeighbor实例对象。

然后,在验证集上进行k-fold交叉验证。选择不同的k值,根据验证结果,选择最佳的k值。

这里写图片描述
这里写图片描述

可见,k值取3的时候,验证集的准确率最高。此例中,由于总体样本数据量不够多,所以验证结果并不明显。但是使用k-fold交叉验证来选择最佳k值是最常用的方法之一。

选择完合适的k值之后,就可以对测试集进行预测分析了。

代码语言:javascript
复制
KNN.train(X_train, y_train)
y_pred = KNN.predict(X_test, k=6)
accuracy = np.mean(y_pred == y_test)
print('测试集预测准确率:%f' % accuracy)

测试集预测准确率:1.000000

最终结果显示,测试集预测准确率为100%。

最后,我们把预测结果绘图表示。仍然只选择sepal length和petal length两个特征,在二维平面上作图。

代码语言:javascript
复制
# 训练集
plt.scatter(X_setosa_train[:, 0], X_setosa_train[:, 2], color='red', marker='o', label='setosa_train')
plt.scatter(X_versicolor_train[:, 0], X_versicolor_train[:, 2], color='blue', marker='^', label='versicolor_train')
plt.scatter(X_virginica_train[:, 0], X_virginica_train[:, 2], color='green', marker='s', label='virginica_train')
# 测试集
plt.scatter(X_setosa_test[:, 0], X_setosa_test[:, 2], color='y', marker='o', label='setosa_test')
plt.scatter(X_versicolor_test[:, 0], X_versicolor_test[:, 2], color='y', marker='^', label='versicolor_test')
plt.scatter(X_virginica_test[:, 0], X_virginica_test[:, 2], color='y', marker='s', label='virginica_test')

plt.xlabel('sepal length')
plt.ylabel('petal length')
plt.legend(loc = 4)
plt.show()
这里写图片描述
这里写图片描述

6. k近邻算法总结

k近邻算法是一种最简单最直观的分类算法。它的训练过程保留了所有样本的所有特征,把所有信息都记下来,没有经过处理和提取。而其它机器学习算法包括神经网络则是在训练过程中提取最重要、最有代表性的特征。在这一点上,kNN算法还非常不够“智能”。但是,kNN算法作为机器学习的基础算法,还是值得我们了解一下的。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018年06月07日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 什么是k近邻算法?
  • 2. k近邻算法的本质
  • 3. 数据准备
  • 4. kNN训练函数和预测函数
  • 5. 训练和预测
  • 6. k近邻算法总结
相关产品与服务
数据保险箱
数据保险箱(Cloud Data Coffer Service,CDCS)为您提供更高安全系数的企业核心数据存储服务。您可以通过自定义过期天数的方法删除数据,避免误删带来的损害,还可以将数据跨地域存储,防止一些不可抗因素导致的数据丢失。数据保险箱支持通过控制台、API 等多样化方式快速简单接入,实现海量数据的存储管理。您可以使用数据保险箱对文件数据进行上传、下载,最终实现数据的安全存储和提取。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档