专栏首页机器学习、深度学习ubuntu16.0.4 opencv4.0.0 yolov3测试

ubuntu16.0.4 opencv4.0.0 yolov3测试

硬件信息 8 Intel® Core™ i7-4790 CPU @ 3.60GHz

每张图像检测时间约 280ms

opencv 暂时好像不支持 GPU 版本的yolov3

yolov3.cpp

// This code is written at BigVision LLC. It is based on the OpenCV project. It is subject to the license terms in the LICENSE file found in this distribution and at http://opencv.org/license.html

// Usage example:  ./object_detection_yolo.out --video=run.mp4
//                 ./object_detection_yolo.out --image=bird.jpg
#include <fstream>
#include <sstream>
#include <iostream>

#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>

const char* keys =
"{help h usage ? | | Usage examples: \n\t\t./object_detection_yolo.out --image=dog.jpg \n\t\t./object_detection_yolo.out --video=run_sm.mp4}"
"{image i        |<none>| input image   }"
"{video v       |<none>| input video   }"
;
using namespace cv;
using namespace dnn;
using namespace std;

// Initialize the parameters
float confThreshold = 0.5; // Confidence threshold
float nmsThreshold = 0.4;  // Non-maximum suppression threshold
int inpWidth = 416;  // Width of network's input image
int inpHeight = 416; // Height of network's input image
vector<string> classes;

// Remove the bounding boxes with low confidence using non-maxima suppression
void postprocess(Mat& frame, const vector<Mat>& out);

// Draw the predicted bounding box
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);

// Get the names of the output layers
vector<String> getOutputsNames(const Net& net);

int main(int argc, char** argv)
{
    CommandLineParser parser(argc, argv, keys);
    parser.about("Use this script to run object detection using YOLO3 in OpenCV.");
    if (parser.has("help"))
    {
        parser.printMessage();
        return 0;
    }
    // Load names of classes
    string classesFile = "coco.names";
    ifstream ifs(classesFile.c_str());
    string line;
    while (getline(ifs, line)) classes.push_back(line);
    
    // Give the configuration and weight files for the model
    String modelConfiguration = "yolov3.cfg";
    String modelWeights = "yolov3.weights";

    // Load the network
    Net net = readNetFromDarknet(modelConfiguration, modelWeights);
    net.setPreferableBackend(DNN_BACKEND_OPENCV);
    net.setPreferableTarget(DNN_TARGET_CPU);  //DNN_TARGET_OPENCL
    
    // Open a video file or an image file or a camera stream.
    string str, outputFile;
    VideoCapture cap;
    VideoWriter video;
    Mat frame, blob;
    
    try {
        
        outputFile = "yolo_out_cpp.avi";
        if (parser.has("image"))
        {
            // Open the image file
            str = parser.get<String>("image");
            ifstream ifile(str);
            if (!ifile) throw("error");
            cap.open(str);
            str.replace(str.end()-4, str.end(), "_yolo_out_cpp.jpg");
            outputFile = str;
        }
        else if (parser.has("video"))
        {
            // Open the video file
            str = parser.get<String>("video");
            ifstream ifile(str);
            if (!ifile) throw("error");
            cap.open(str);
            str.replace(str.end()-4, str.end(), "_yolo_out_cpp.avi");
            outputFile = str;
        }
        // Open the webcaom
        else cap.open(parser.get<int>("device"));
        
    }
    catch(...) {
        cout << "Could not open the input image/video stream" << endl;
        return 0;
    }
    
    // Get the video writer initialized to save the output video
    if (!parser.has("image")) {
        video.open(outputFile, VideoWriter::fourcc('M','J','P','G'), 28, Size(cap.get(CAP_PROP_FRAME_WIDTH), cap.get(CAP_PROP_FRAME_HEIGHT)));
    }
    
    // Create a window
    static const string kWinName = "Deep learning object detection in OpenCV";
    namedWindow(kWinName, WINDOW_NORMAL);

    // Process frames.
    while (waitKey(1) < 0)
    {
        // get frame from the video
        cap >> frame;

        // Stop the program if reached end of video
        if (frame.empty()) {
            cout << "Done processing !!!" << endl;
            cout << "Output file is stored as " << outputFile << endl;
            waitKey(3000);
            break;
        }
        // Create a 4D blob from a frame.
        blobFromImage(frame, blob, 1/255.0, cv::Size(inpWidth, inpHeight), Scalar(0,0,0), true, false);
        
        //Sets the input to the network
        net.setInput(blob);
        
        // Runs the forward pass to get output of the output layers
        vector<Mat> outs;
        net.forward(outs, getOutputsNames(net));
        
        // Remove the bounding boxes with low confidence
        postprocess(frame, outs);
        
        // Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
        vector<double> layersTimes;
        double freq = getTickFrequency() / 1000;
        double t = net.getPerfProfile(layersTimes) / freq;
        string label = format("Inference time for a frame : %.2f ms", t);
        putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255));
        
        // Write the frame with the detection boxes
        Mat detectedFrame;
        frame.convertTo(detectedFrame, CV_8U);
        if (parser.has("image")) imwrite(outputFile, detectedFrame);
        else video.write(detectedFrame);
        
        imshow(kWinName, frame);
        
    }
    
    cap.release();
    if (!parser.has("image")) video.release();

    return 0;
}

// Remove the bounding boxes with low confidence using non-maxima suppression
void postprocess(Mat& frame, const vector<Mat>& outs)
{
    vector<int> classIds;
    vector<float> confidences;
    vector<Rect> boxes;
    
    for (size_t i = 0; i < outs.size(); ++i)
    {
        // Scan through all the bounding boxes output from the network and keep only the
        // ones with high confidence scores. Assign the box's class label as the class
        // with the highest score for the box.
        float* data = (float*)outs[i].data;
        for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)
        {
            Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
            Point classIdPoint;
            double confidence;
            // Get the value and location of the maximum score
            minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
            if (confidence > confThreshold)
            {
                int centerX = (int)(data[0] * frame.cols);
                int centerY = (int)(data[1] * frame.rows);
                int width = (int)(data[2] * frame.cols);
                int height = (int)(data[3] * frame.rows);
                int left = centerX - width / 2;
                int top = centerY - height / 2;
                
                classIds.push_back(classIdPoint.x);
                confidences.push_back((float)confidence);
                boxes.push_back(Rect(left, top, width, height));
            }
        }
    }
    
    // Perform non maximum suppression to eliminate redundant overlapping boxes with
    // lower confidences
    vector<int> indices;
    NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        Rect box = boxes[idx];
        drawPred(classIds[idx], confidences[idx], box.x, box.y,
                 box.x + box.width, box.y + box.height, frame);
    }
}

// Draw the predicted bounding box
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
{
    //Draw a rectangle displaying the bounding box
    rectangle(frame, Point(left, top), Point(right, bottom), Scalar(255, 178, 50), 3);
    
    //Get the label for the class name and its confidence
    string label = format("%.2f", conf);
    if (!classes.empty())
    {
        CV_Assert(classId < (int)classes.size());
        label = classes[classId] + ":" + label;
    }
    
    //Display the label at the top of the bounding box
    int baseLine;
    Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
    top = max(top, labelSize.height);
    rectangle(frame, Point(left, top - round(1.5*labelSize.height)), Point(left + round(1.5*labelSize.width), top + baseLine), Scalar(255, 255, 255), FILLED);
    putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0,0,0),1);
}

// Get the names of the output layers
vector<String> getOutputsNames(const Net& net)
{
    static vector<String> names;
    if (names.empty())
    {
        //Get the indices of the output layers, i.e. the layers with unconnected outputs
        vector<int> outLayers = net.getUnconnectedOutLayers();
        
        //get the names of all the layers in the network
        vector<String> layersNames = net.getLayerNames();
        
        // Get the names of the output layers in names
        names.resize(outLayers.size());
        for (size_t i = 0; i < outLayers.size(); ++i)
        names[i] = layersNames[outLayers[i] - 1];
    }
    return names;
}

CMakeLists.txt

cmake_minimum_required(VERSION 3.4)
set(CMAKE_CXX_FLAGS "-std=c++11")
project( opencv_yolov3 )
set(OpenCV_DIR "/home/zhangjun/SoftWare/opencv-4.0.0/build")
find_package( OpenCV REQUIRED )
message(STATUS "OpenCV_VERSION:" ${OpenCV_VERSION})

add_executable( opencv_yolov3 yolov3.cpp )

target_link_libraries( opencv_yolov3 ${OpenCV_LIBS} )

cmake . make ./opencv_yolov3 --image=12.jpg ./opencv_yolov3 --video=run.mp4

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 多人部件解析

    Towards Real World Human Parsing: Multiple-Human Parsing in the Wild https://a...

    用户1148525
  • What is Mahalanobis distance? 马氏距离

    https://blogs.sas.com/content/iml/2012/02/15/what-is-mahalanobis-distance.html

    用户1148525
  • 视频物体分割--One-Shot Video Object Segmentation

    One-Shot Video Object Segmentation CVPR2017 http://www.vision.ee.ethz.ch/~cvl...

    用户1148525
  • PAT 1006 Sign In and Sign Out

    1006. Sign In and Sign Out (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 1600...

    ShenduCC
  • 【PAT甲级】The Black Hole of Numbers

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 ...

    喜欢ctrl的cxk
  • ZOJ 3715 Kindergarten Election

    At the beginning of the semester in kindergarten, the n little kids (indexed fro...

    ShenduCC
  • VF

    Vasya is the beginning mathematician. He decided to make an important contributi...

    书童小二
  • HDU 6016 Count the Sheep

    Count the Sheep Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/6...

    ShenduCC
  • pta 习题集 5-5 最长连续递增子序列 (dp)

    Count the Sheep Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/6...

    ShenduCC
  • HDUOJ-----(1162)Eddy's picture(最小生成树)

    Eddy's picture Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/327...

    Gxjun

扫码关注云+社区

领取腾讯云代金券