前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >[PyTorch小试牛刀]实战五·RNN(LSTM)实现逻辑回归对FashionMNIST数据集进行分类(使用GPU)

[PyTorch小试牛刀]实战五·RNN(LSTM)实现逻辑回归对FashionMNIST数据集进行分类(使用GPU)

作者头像
小宋是呢
发布2019-06-27 11:44:31
1.5K0
发布2019-06-27 11:44:31
举报
文章被收录于专栏:深度应用深度应用

[PyTorch小试牛刀]实战五·RNN(LSTM)实现逻辑回归对FashionMNIST数据集进行分类(使用GPU)

内容还包括了网络模型参数的保存于加载。 数据集 下载地址 代码部分

代码语言:javascript
复制
import torch as t
import torchvision as tv
import numpy as np
import time


# 超参数
EPOCH = 5
BATCH_SIZE = 100
DOWNLOAD_MNIST = True   # 下过数据的话, 就可以设置成 False
N_TEST_IMG = 10          # 到时候显示 

TIME_STEP = 28      # rnn 时间步数 / 图片高度
INPUT_SIZE = 28     # rnn 每步输入值 / 图片每行像素


class NN(t.nn.Module):
    def __init__(self):
        super(NN, self).__init__()

        train_data = tv.datasets.FashionMNIST(
        root="./fashionmnist/",
        train=True,
        transform=tv.transforms.ToTensor(),
        download=DOWNLOAD_MNIST
        )

        test_data = tv.datasets.FashionMNIST(
        root="./fashionmnist/",
        train=False,
        transform=tv.transforms.ToTensor(),
        download=DOWNLOAD_MNIST
        )

        #print(test_data)


        # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
        self.train_loader = t.utils.data.DataLoader(
            dataset=train_data, 
            batch_size=BATCH_SIZE,
            shuffle=True)

        self.test_loader = t.utils.data.DataLoader(
            dataset=test_data, 
            batch_size=1000,
            shuffle=True)

        self.rnn = t.nn.Sequential(
            t.nn.LSTM(     # LSTM 效果要比 nn.RNN() 好多了
            input_size=28,      # 图片每行的数据像素点
            hidden_size=256,     # rnn hidden unit
            num_layers=2,       # 有几层 RNN layers
            batch_first=True,   # input & output 会是以 batch size 为第一维度的特征集 e.g. (batch, time_step, input_size)
            )                   # output shape (16, 28, 28)
        )

        self.dnn = t.nn.Linear(256,10)

        self.lr = 0.001
        self.loss = t.nn.CrossEntropyLoss()
        self.opt = t.optim.Adam(self.parameters(), lr = self.lr)

    def forward(self,x):
        # x shape (batch, time_step, input_size)
        # r_out shape (batch, time_step, output_size)
        # h_n shape (n_layers, batch, hidden_size)   LSTM 有两个 hidden states, h_n 是分线, h_c 是主线
        # h_c shape (n_layers, batch, hidden_size)

        rnn1 = self.rnn(x)
        #print(cnn1.shape)
        r_out, (h_n, h_c)  = rnn1
        #print(cnn1.shape)
        out = self.dnn(r_out[:,-1,:])

        return(out)

def train():
    use_gpu =   t.cuda.is_available()
    model = NN()
    if(use_gpu):
        model.cuda()
    print(model)
    loss = model.loss
    opt = model.opt
    dataloader = model.train_loader
    testloader = model.test_loader

    
    for e in range(EPOCH):
        step = 0
        ts = time.time()
        for (x, y) in (dataloader):
            

            model.train()# train model dropout used
            step += 1
            b_x = x.view(-1,28,28)   # batch x, shape (batch, 28*28)
            #print(b_x.shape)
            b_y = y
            if(use_gpu):
                b_x = b_x.cuda()
                b_y = b_y.cuda()
            out = model(b_x)
            losses = loss(out,b_y)
            opt.zero_grad()
            losses.backward()
            opt.step()
            if(step%100 == 0):
                if(use_gpu):
                    print(e,step,losses.data.cpu().numpy())
                else:
                    print(e,step,losses.data.numpy())
                
                model.eval() # train model dropout not use
                for (tx,ty) in testloader:
                    t_x = tx.view(-1,28,28)   # batch x, shape (batch, 28*28)
                    t_y = ty
                    if(use_gpu):
                        t_x = t_x.cuda()
                        t_y = t_y.cuda()
                    t_out = model(t_x)
                    if(use_gpu):
                        acc = (np.argmax(t_out.data.cpu().numpy(),axis=1) == t_y.data.cpu().numpy())
                    else:
                        acc = (np.argmax(t_out.data.numpy(),axis=1) == t_y.data.numpy())

                    print(time.time() - ts ,np.sum(acc)/1000)
                    ts = time.time()
                    break#只测试前1000个
            


    t.save(model, './model.pkl')  # 保存整个网络
    t.save(model.state_dict(), './model_params.pkl')   # 只保存网络中的参数 (速度快, 占内存少)
    #加载参数的方式
    """net = DNN()
    net.load_state_dict(t.load('./model_params.pkl'))
    net.eval()"""
    #加载整个模型的方式
    net = t.load('./model.pkl')
    net.cpu()
    net.eval()
    for (tx,ty) in testloader:
        t_x = tx.view(-1,28,28)   # batch x, shape (batch, 28*28)
        t_y = ty

        t_out = net(t_x)
        #acc = (np.argmax(t_out.data.CPU().numpy(),axis=1) == t_y.data.CPU().numpy())
        acc = (np.argmax(t_out.data.numpy(),axis=1) == t_y.data.numpy())

        print(np.sum(acc)/1000)

if __name__ == "__main__":
    train()

输出结果

代码语言:javascript
复制
NN(
  (rnn): Sequential(
    (0): LSTM(28, 256, num_layers=2, batch_first=True)
  )
  (dnn): Linear(in_features=256, out_features=10, bias=True)
  (loss): CrossEntropyLoss()
)
0 100 0.77180815
3.650240659713745 0.706
0 200 0.8147288
3.3065454959869385 0.711
0 300 0.754965
3.3209893703460693 0.736
0 400 0.5886362
3.3486075401306152 0.803
0 500 0.4883507
3.3163959980010986 0.781
0 600 0.66265166
3.3470709323883057 0.808
1 100 0.3800248
3.3159289360046387 0.821
1 200 0.30893803
3.403984785079956 0.826
1 300 0.59795433
3.7441184520721436 0.84
1 400 0.48738843
3.3226170539855957 0.854
1 500 0.392042
3.3506269454956055 0.843
1 600 0.25022513
。。。
3.291714906692505 0.871
4 500 0.3532069
3.344895839691162 0.88
4 600 0.2680706
3.7954905033111572 0.882
0.888
0.886
0.89
0.859
0.874
0.881
0.869
0.888
0.866
0.885

结果分析 我笔记本配置为CPU i5 8250u GPU MX150 2G内存 使用CPU训练时,每100步,58秒左右 使用GPU训练时,每100步,3.3秒左右 提升了将近20倍, 经过测试,使用GPU运算RNN速率大概是CPU的15~20倍,推荐大家使用GPU运算,就算GPU配置差些也可以显著提升效率。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018年12月23日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • [PyTorch小试牛刀]实战五·RNN(LSTM)实现逻辑回归对FashionMNIST数据集进行分类(使用GPU)
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档