前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【数据挖掘项目】Airbnb新用户的民宿预定结果预测

【数据挖掘项目】Airbnb新用户的民宿预定结果预测

作者头像
Datawhale
发布2019-07-08 10:45:11
2K0
发布2019-07-08 10:45:11
举报
文章被收录于专栏:Datawhale专栏Datawhale专栏

摘要 本文主要根据对Airbnb 新用户的民宿预定结果进行预测,完整的陈述了从 数据探索特征工程构建模型的整个过程。 其中: 1数据探索部分主要基于 pandas库,利用常见的: head()value_counts()describe()isnull()unique()等函数以及通过 matplotlib作图对数据进行理解和探索; 2.特征工程部分主要是通过从日期中提取 年月日季节weekday,对年龄进行 分段,计算相关特征之间的 差值,根据用户id进行分组,从而统计一些特征变量的 次数平均值标准差等等,以及通过 one hot encodinglabels encoding对数据进行编码来提取特征; 3.构建模型部分主要基于 sklearn包xgboost包,通过调用不同的模型进行预测,其中涉及到的模型有,逻辑回归模型 LogisticRegression,树模型: DecisionTree,RandomForest,AdaBoost,Bagging,ExtraTree,GraBoost,SVM模型: SVM-rbf,SVM-poly,SVM-linearxgboost,以及通过改变 模型的参数数据量大小,来观察 NDGG的评分结果,从而了解不同模型,不同参数和不同数据量大小对预测结果的影响.

1. 背景

About this Dataset,In this challenge, you are given a list of users along with their demographics, web session records, and some summary statistics. You are asked to predict which country a new user's first booking destination will be. All the users in this dataset are from the USA.

There are 12 possible outcomes of the destination country: 'US', 'FR', 'CA', 'GB', 'ES', 'IT', 'PT', 'NL','DE', 'AU', 'NDF' (no destination found), and 'other'. Please note that 'NDF' is different from 'other' because 'other' means there was a booking, but is to a country not included in the list, while 'NDF' means there wasn't a booking.

2. 数据描述

总共包含6个csv文件

  1. trainusers2.csv - the training set of users (训练数据)
  2. testusers.csv - the test set of users (测试数据)
    • id: user id (用户id)
    • dateaccountcreated(帐号注册时间): the date of account creation
    • timestampfirstactive(首次活跃时间): timestamp of the first activity, note that it can be earlier than dateaccountcreated or datefirstbooking because a user can search before signing up
    • datefirstbooking(首次订房时间): date of first booking
    • gender(性别)
    • age(年龄)
  3. signupmethod(注册方式)
  4. signupflow(注册页面): the page a user came to signup up from
  5. language(语言): international language preference
  6. affiliatechannel(付费市场渠道): what kind of paid marketing
  7. affiliateprovider(付费市场渠道名称): where the marketing is e.g. google, craigslist, other

affiliate

  1. signupapp(注册app)
  2. firstdevicetype(设备类型)
  3. firstbrowser(浏览器类型)
  4. countrydestination订房国家-需要预测的量): this is the target variable you are to predict
  5. sessions.csv - web sessions log for users(网页浏览数据)
    • userid(用户id): to be joined with the column 'id' in users table
    • action(用户行为)
  6. actiontype(用户行为类型)
  7. actiondetail(用户行为具体)
  8. devicetype(设备类型)
  9. secs_elapsed(停留时长)
  10. sample_submission.csv - correct format for submitting your predictions
  • 数据下载地址 Airbnb 新用户的民宿预定预测-数据集

3. 数据探索

  • 基于jupyter notebook 和 python3

3.1 trainusers2和test_users文件

读取文件

代码语言:javascript
复制
train = pd.read_csv("train_users_2.csv")
test = pd.read_csv("test_users.csv")

导包

代码语言:javascript
复制
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn as sk
%matplotlib inline
import datetime
import os
import seaborn as sns#数据可视化
from datetime import date
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelBinarizer
import pickle #用于存储模型
import seaborn as sns
from sklearn.metrics import *
from sklearn.model_selection import *

查看数据包含的特征

代码语言:javascript
复制
print('the columns name of training dataset:\n',train.columns)
print('the columns name of test dataset:\n',test.columns)

分析:

  1. train文件比test文件多了特征-country_destination
  2. country_destination是需要预测的目标变量
  3. 数据探索时着重分析train文件,test文件类似

查看数据信息

代码语言:javascript
复制
print(train.info())

分析:

  1. trian文件包含213451行数据,16个特征
  2. 每个特征的数据类型和非空数值
  3. datefirstbooking空值较多,在特征提取时可以考虑删除

特征分析:1. dateaccountcreated

1.1 查看dateaccountcreated前几行数据

代码语言:javascript
复制
print(train.date_account_created.head())

1.2 对dateaccountcreated数据进行统计

代码语言:javascript
复制
print(train.date_account_created.value_counts().head())
print(train.date_account_created.value_counts().tail())

1.3获取dateaccountcreated信息

代码语言:javascript
复制
print(train.date_account_created.describe())

1.4观察用户增长情况

代码语言:javascript
复制
dac_train = train.date_account_created.value_counts()
dac_test = test.date_account_created.value_counts()
#将数据类型转换为datatime类型
dac_train_date = pd.to_datetime(train.date_account_created.value_counts().index)
dac_test_date = pd.to_datetime(test.date_account_created.value_counts().index)
#计算离首次注册时间相差的天数
dac_train_day = dac_train_date - dac_train_date.min()
dac_test_day = dac_test_date - dac_train_date.min()
#motplotlib作图
plt.scatter(dac_train_day.days, dac_train.values, color = 'r', label = 'train dataset')
plt.scatter(dac_test_day.days, dac_test.values, color = 'b', label = 'test dataset')

plt.title("Accounts created vs day")
plt.xlabel("Days")
plt.ylabel("Accounts created")
plt.legend(loc = 'upper left')

分析:

  1. x轴:离首次注册时间相差的天数
  2. y轴:当天注册的用户数量
  3. 随着时间的增长,用户注册的数量在急剧上升

2. timestampfirstactive2.1查看头几行数据

代码语言:javascript
复制
print(train.timestamp_first_active.head())

2.2对数据进行统计看非重复值的数量

代码语言:javascript
复制
print(train.timestamp_first_active.value_counts().unique())

[1] 分析: 结果[1]表明timestampfirstactive没有重复数据

2.3将时间戳转成日期形式并获取数据信息

代码语言:javascript
复制
tfa_train_dt = train.timestamp_first_active.astype(str).apply(lambda x:  
                                                                    datetime.datetime(int(x[:4]),
                                                                                      int(x[4:6]), 
                                                                                      int(x[6:8]), 
                                                                                      int(x[8:10]), 
                                                                                      int(x[10:12]),
                                                                                      int(x[12:])))
print(tfa_train_dt.describe())

3. datefirstbooking获取数据信息

代码语言:javascript
复制
print(train.date_first_booking.describe())
print(test.date_first_booking.describe())

分析:

  1. train文件中datefirstbooking有大量缺失值
  2. test文件中datefirstbooking全是缺失值
  3. 可以删除特征datefirstbooking

4.age4.1对数据进行统计

代码语言:javascript
复制
print(train.age.value_counts().head())

分析:用户年龄主要集中在30左右4.2柱状图统计

代码语言:javascript
复制
#首先将年龄进行分成4组missing values, too small age, reasonable age, too large age
age_train =[train[train.age.isnull()].age.shape[0],
            train.query('age < 15').age.shape[0],
            train.query("age >= 15 & age <= 90").age.shape[0],
            train.query('age > 90').age.shape[0]]

age_test = [test[test.age.isnull()].age.shape[0],
            test.query('age < 15').age.shape[0],
            test.query("age >= 15 & age <= 90").age.shape[0],
            test.query('age > 90').age.shape[0]]

columns = ['Null', 'age < 15', 'age', 'age > 90']

# plot
fig, (ax1,ax2) = plt.subplots(1,2,sharex=True, sharey = True,figsize=(10,5))

sns.barplot(columns, age_train, ax = ax1)
sns.barplot(columns, age_test, ax = ax2)

ax1.set_title('training dataset')
ax2.set_title('test dataset')
ax1.set_ylabel('counts')

分析:异常年龄较少,且有一定数量的缺失值

5.其他特征

  • train文件中其他特征由于labels较少,我们可以在特征工程中直接进行one hot encoding即可

统一使用柱状图进行统计

代码语言:javascript
复制
def feature_barplot(feature, df_train = train, df_test = test, figsize=(10,5), rot = 90, saveimg = False): 
    feat_train = df_train[feature].value_counts()
    feat_test = df_test[feature].value_counts()
    fig_feature, (axis1,axis2) = plt.subplots(1,2,sharex=True, sharey = True, figsize = figsize)
    sns.barplot(feat_train.index.values, feat_train.values, ax = axis1)
    sns.barplot(feat_test.index.values, feat_test.values, ax = axis2)
    axis1.set_xticklabels(axis1.xaxis.get_majorticklabels(), rotation = rot)
    axis2.set_xticklabels(axis1.xaxis.get_majorticklabels(), rotation = rot)
    axis1.set_title(feature + ' of training dataset')
    axis2.set_title(feature + ' of test dataset')
    axis1.set_ylabel('Counts')
    plt.tight_layout()
    if saveimg == True:
        figname = feature + ".png"
        fig_feature.savefig(figname, dpi = 75)

5.1 gender

代码语言:javascript
复制
feature_barplot('gender', saveimg = True)

5.2 signup_method

代码语言:javascript
复制
feature_barplot('signup_method')

5.3 signup_flow

代码语言:javascript
复制
feature_barplot('signup_flow')

5.4 language

代码语言:javascript
复制
feature_barplot('language')

5.5 affiliate_channel

代码语言:javascript
复制
feature_barplot('affiliate_channel')

5.6 firstaffiliatetracked

代码语言:javascript
复制
feature_barplot('first_affiliate_tracked')

5.7 signup_app

代码语言:javascript
复制
feature_barplot('signup_app')

5.8 firstdevicetype

代码语言:javascript
复制
feature_barplot('first_device_type')

5.9 first_browser

代码语言:javascript
复制
feature_barplot('first_browser')

3.2 sesion文件

获取数据并查看头10行数据

代码语言:javascript
复制
df_sessions = pd.read_csv('sessions.csv')
df_sessions.head(10)

将user_id改名为id

代码语言:javascript
复制
#这是为了后面的数据合并
df_sessions['id'] = df_sessions['user_id']
df_sessions = df_sessions.drop(['user_id'],axis=1) #按行删除

查看数据的shape

代码语言:javascript
复制
df_sessions.shape

(10567737, 6) 分析:session文件有10567737行数据,6个特征

查看缺失值

代码语言:javascript
复制
df_sessions.isnull().sum()

分析:action,actiontype,actiondetail, secs_elapsed缺失值较多

填充缺失值

代码语言:javascript
复制
df_sessions.action = df_sessions.action.fillna('NAN')
df_sessions.action_type = df_sessions.action_type.fillna('NAN')
df_sessions.action_detail = df_sessions.action_detail.fillna('NAN')
df_sessions.isnull().sum()

分析:

  1. 填充后缺失值已经为0了
  2. secs_elapsed 在后续做填充处理

4. 特征提取

  • 在对数据有一定了解后,我们进行特征提取工作

4.1 对session文件特征提取

1.action

代码语言:javascript
复制
df_sessions.action.head()
代码语言:javascript
复制
df_sessions.action.value_counts().min()

1 分析:对action进行统计,我们可以发现用户action有多种,且最少的发生次数只有1,接下来我们可以对用户发生次数较少的行为列为OTHER一类

1.1 将特征action次数低于阈值100的列为OTHER

代码语言:javascript
复制
#Action values with low frequency are changed to 'OTHER'
act_freq = 100  #Threshold of frequency
act = dict(zip(*np.unique(df_sessions.action, return_counts=True)))
df_sessions.action = df_sessions.action.apply(lambda x: 'OTHER' if act[x] < act_freq else x)
#np.unique(df_sessions.action, return_counts=True) 取以数组形式返回非重复的action值和它的数量
#zip(*(a,b))a,b种元素一一对应,返回zip object

2. 对特征action,actiondetail,actiontype,devicetype,secselapsed进行细化

  • 首先将用户的特征根据用户id进行分组
  • 特征action:统计每个用户总的action出现的次数,各个action类型的数量,平均值以及标准差
  • 特征actiondetail:统计每个用户总的actiondetail出现的次数,各个action_detail类型的数量,平均值以及标准差
  • 特征actiontype:统计每个用户总的actiontype出现的次数,各个action_type类型的数量,平均值,标准差以及总的停留时长(进行log处理)
  • 特征devicetype:统计每个用户总的devicetype出现的次数,各个device_type类型的数量,平均值以及标准差
  • 特征secselapsed:对缺失值用0填充,统计每个用户secselapsed时间的总和,平均值,标准差以及中位数(进行log处理),(总和/平均数),secs_elapsed(log处理后)各个时间出现的次数
代码语言:javascript
复制
#对action特征进行细化
f_act = df_sessions.action.value_counts().argsort()
f_act_detail = df_sessions.action_detail.value_counts().argsort()
f_act_type = df_sessions.action_type.value_counts().argsort()
f_dev_type = df_sessions.device_type.value_counts().argsort()

#按照id进行分组
dgr_sess = df_sessions.groupby(['id'])
#Loop on dgr_sess to create all the features.
samples = [] #samples列表
ln = len(dgr_sess) #计算分组后df_sessions的长度

for g in dgr_sess:  #对dgr_sess中每个id的数据进行遍历
    gr = g[1]   #data frame that comtains all the data for a groupby value 'zzywmcn0jv'

    l = []  #建一个空列表,临时存放特征

    #the id    for example:'zzywmcn0jv'
    l.append(g[0]) #将id值放入空列表中

    # number of total actions
    l.append(len(gr))#将id对应数据的长度放入列表

    #secs_elapsed 特征中的缺失值用0填充再获取具体的停留时长值
    sev = gr.secs_elapsed.fillna(0).values   #These values are used later.

    #action features 特征-用户行为 
    #每个用户行为出现的次数,各个行为类型的数量,平均值以及标准差
    c_act = [0] * len(f_act)
    for i,v in enumerate(gr.action.values): #i是从0-1对应的位置,v 是用户行为特征的值
        c_act[f_act[v]] += 1
    _, c_act_uqc = np.unique(gr.action.values, return_counts=True)
    #计算用户行为行为特征各个类型数量的长度,平均值以及标准差
    c_act += [len(c_act_uqc), np.mean(c_act_uqc), np.std(c_act_uqc)]
    l = l + c_act

    #action_detail features 特征-用户行为具体
    #(how many times each value occurs, numb of unique values, mean and std)
    c_act_detail = [0] * len(f_act_detail)
    for i,v in enumerate(gr.action_detail.values):
        c_act_detail[f_act_detail[v]] += 1
    _, c_act_det_uqc = np.unique(gr.action_detail.values, return_counts=True)
    c_act_detail += [len(c_act_det_uqc), np.mean(c_act_det_uqc), np.std(c_act_det_uqc)]
    l = l + c_act_detail

    #action_type features  特征-用户行为类型 click等
    #(how many times each value occurs, numb of unique values, mean and std
    #+ log of the sum of secs_elapsed for each value)
    l_act_type = [0] * len(f_act_type)
    c_act_type = [0] * len(f_act_type)
    for i,v in enumerate(gr.action_type.values):
        l_act_type[f_act_type[v]] += sev[i] #sev = gr.secs_elapsed.fillna(0).values ,求每个行为类型总的停留时长
        c_act_type[f_act_type[v]] += 1  
    l_act_type = np.log(1 + np.array(l_act_type)).tolist() #每个行为类型总的停留时长,差异比较大,进行log处理
    _, c_act_type_uqc = np.unique(gr.action_type.values, return_counts=True)
    c_act_type += [len(c_act_type_uqc), np.mean(c_act_type_uqc), np.std(c_act_type_uqc)]
    l = l + c_act_type + l_act_type    

    #device_type features 特征-设备类型
    #(how many times each value occurs, numb of unique values, mean and std)
    c_dev_type  = [0] * len(f_dev_type)
    for i,v in enumerate(gr.device_type .values):
        c_dev_type[f_dev_type[v]] += 1 
    c_dev_type.append(len(np.unique(gr.device_type.values))) 
    _, c_dev_type_uqc = np.unique(gr.device_type.values, return_counts=True)
    c_dev_type += [len(c_dev_type_uqc), np.mean(c_dev_type_uqc), np.std(c_dev_type_uqc)]        
    l = l + c_dev_type    

    #secs_elapsed features  特征-停留时长     
    l_secs = [0] * 5 
    l_log = [0] * 15
    if len(sev) > 0:
        #Simple statistics about the secs_elapsed values.
        l_secs[0] = np.log(1 + np.sum(sev))
        l_secs[1] = np.log(1 + np.mean(sev)) 
        l_secs[2] = np.log(1 + np.std(sev))
        l_secs[3] = np.log(1 + np.median(sev))
        l_secs[4] = l_secs[0] / float(l[1]) #

        #Values are grouped in 15 intervals. Compute the number of values
        #in each interval.
        #sev = gr.secs_elapsed.fillna(0).values 
        log_sev = np.log(1 + sev).astype(int)
        #np.bincount():Count number of occurrences of each value in array of non-negative ints.  
        l_log = np.bincount(log_sev, minlength=15).tolist()                    
    l = l + l_secs + l_log

    #The list l has the feature values of one sample.
    samples.append(l)

#preparing objects    
samples = np.array(samples) 
samp_ar = samples[:, 1:].astype(np.float16) #取除id外的特征数据
samp_id = samples[:, 0]   #取id,id位于第一列

#为提取的特征创建一个dataframe     
col_names = []    #name of the columns
for i in range(len(samples[0])-1):  #减1的原因是因为有个id
    col_names.append('c_' + str(i))  #起名字的方式    
df_agg_sess = pd.DataFrame(samp_ar, columns=col_names)
df_agg_sess['id'] = samp_id
df_agg_sess.index = df_agg_sess.id #将id作为index
代码语言:javascript
复制
df_agg_sess.head()

分析:经过特征提取后,session文件由6个特征变为458个特征

4.2 对trian和test文件进行特征提取

标记train文件的行数和存储我们进行预测的目标变量

  • labels存储了我们进行预测的目标变量country_destination
代码语言:javascript
复制
train = pd.read_csv("train_users_2.csv")
test = pd.read_csv("test_users.csv")
#计算出train的行数,便于之后对train和test数据进行分离操作
train_row = train.shape[0]  

# The label we need to predict
labels = train['country_destination'].values

删除datefirstbooking和train文件中的country_destination

  • 数据探索时我们发现datefirstbooking在train和test文件中缺失值太多,故删除
  • 删除countrydestination,用模型预测countrydestination,再与已经存储country_destination的labels进行比较,从而判断模型优劣
代码语言:javascript
复制
train.drop(['country_destination', 'date_first_booking'], axis = 1, inplace = True)
test.drop(['date_first_booking'], axis = 1, inplace = True)

合并train和test文件

  • 便于进行相同的特征提取操作
代码语言:javascript
复制
#连接test 和 train
df = pd.concat([train, test], axis = 0, ignore_index = True)

1. timestampfirstactive1.1 转换为datetime类型

代码语言:javascript
复制
tfa = df.timestamp_first_active.astype(str).apply(lambda x: datetime.datetime(int(x[:4]),
                                                                          int(x[4:6]), 
                                                                          int(x[6:8]),
                                                                          int(x[8:10]),
                                                                          int(x[10:12]),
                                                                          int(x[12:])))

1.2 提取特征:年,月,日

代码语言:javascript
复制
# create tfa_year, tfa_month, tfa_day feature
df['tfa_year'] = np.array([x.year for x in tfa])
df['tfa_month'] = np.array([x.month for x in tfa])
df['tfa_day'] = np.array([x.day for x in tfa])

1.3 提取特征:weekday

  • 对结果进行one hot encoding编码
代码语言:javascript
复制
#isoweekday() 可以返回一周的星期几,e.g.星期日:0;星期一:1
df['tfa_wd'] = np.array([x.isoweekday() for x in tfa]) 
df_tfa_wd = pd.get_dummies(df.tfa_wd, prefix = 'tfa_wd')  # one hot encoding 
df = pd.concat((df, df_tfa_wd), axis = 1) #添加df['tfa_wd'] 编码后的特征
df.drop(['tfa_wd'], axis = 1, inplace = True)#删除原有未编码的特征

1.4 提取特征:季节

  • 因为判断季节关注的是月份,故对年份进行统一
代码语言:javascript
复制
Y = 2000
seasons = [(0, (date(Y,  1,  1),  date(Y,  3, 20))),  #'winter'
           (1, (date(Y,  3, 21),  date(Y,  6, 20))),  #'spring'
           (2, (date(Y,  6, 21),  date(Y,  9, 22))),  #'summer'
           (3, (date(Y,  9, 23),  date(Y, 12, 20))),  #'autumn'
           (0, (date(Y, 12, 21),  date(Y, 12, 31)))]  #'winter'

def get_season(dt):
    dt = dt.date() #获取日期
    dt = dt.replace(year=Y) #将年统一换成2000年
    return next(season for season, (start, end) in seasons if start <= dt <= end)

df['tfa_season'] = np.array([get_season(x) for x in tfa])
df_tfa_season = pd.get_dummies(df.tfa_season, prefix = 'tfa_season') # one hot encoding 
df = pd.concat((df, df_tfa_season), axis = 1)
df.drop(['tfa_season'], axis = 1, inplace = True)

2. dateaccountcreated2.1 将dateaccountcreated转换为datetime类型

代码语言:javascript
复制
dac = pd.to_datetime(df.date_account_created)

2.2 提取特征:年,月,日

代码语言:javascript
复制
# create year, month, day feature for dac

df['dac_year'] = np.array([x.year for x in dac])
df['dac_month'] = np.array([x.month for x in dac])
df['dac_day'] = np.array([x.day for x in dac])

2.3 提取特征:weekday

代码语言:javascript
复制
# create features of weekday for dac

df['dac_wd'] = np.array([x.isoweekday() for x in dac])
df_dac_wd = pd.get_dummies(df.dac_wd, prefix = 'dac_wd')
df = pd.concat((df, df_dac_wd), axis = 1)
df.drop(['dac_wd'], axis = 1, inplace = True)

2.4 提取特征:季节

代码语言:javascript
复制
# create season features fro dac

df['dac_season'] = np.array([get_season(x) for x in dac])
df_dac_season = pd.get_dummies(df.dac_season, prefix = 'dac_season')
df = pd.concat((df, df_dac_season), axis = 1)
df.drop(['dac_season'], axis = 1, inplace = True)

2.5提取特征:dateaccountcreated和timestampfirstactive之间的差值

  • 即用户在airbnb平台活跃到正式注册所花的时间
代码语言:javascript
复制
dt_span = dac.subtract(tfa).dt.days
  • dt_span的头十行数据
代码语言:javascript
复制
dt_span.value_counts().head(10)

分析:数据主要集中在-1,可以猜测,用户当天注册dt_span值便是-1

  • 从差值提取特征:差值为一天,一月,一年和其他
  • 即用户活跃到注册花费的时间为一天,一月,一年或其他
代码语言:javascript
复制
# create categorical feature: span = -1; -1 < span < 30; 31 < span < 365; span > 365
def get_span(dt):
    # dt is an integer
    if dt == -1:
        return 'OneDay'
    elif (dt < 30) & (dt > -1):
        return 'OneMonth'
    elif (dt >= 30) & (dt <= 365):
        return 'OneYear'
    else:
        return 'other'

df['dt_span'] = np.array([get_span(x) for x in dt_span])
df_dt_span = pd.get_dummies(df.dt_span, prefix = 'dt_span')
df = pd.concat((df, df_dt_span), axis = 1)
df.drop(['dt_span'], axis = 1, inplace = True)

2.6 删除原有的特征

  • 对timestampfirstactive,dateaccountcreated进行特征提取后,从特征列表中删除原有的特征
代码语言:javascript
复制
df.drop(['date_account_created','timestamp_first_active'], axis = 1, inplace = True)

3. age

代码语言:javascript
复制
#Age 获取年龄
av = df.age.values
  • 在数据探索阶段,我们发现大部分数据是集中在(15,90)区间的,但有部分年龄分布在(1900,2000)区间,我们猜测用户是把出生日期误填为年龄,故进行预处理
代码语言:javascript
复制
#This are birthdays instead of age (estimating age by doing 2014 - value)
#数据来自2014年,故用2014-value
av = np.where(np.logical_and(av<2000, av>1900), 2014-av, av) 
df['age'] = av

3.1 将年龄进行分段

代码语言:javascript
复制
age = df.ageage.fillna(-1, inplace = True) #空值填充为-1
div = 15
def get_age(age):
    # age is a float number  将连续型转换为离散型
    if age < 0:
        return 'NA' #表示是空值
    elif (age < div):
        return div #如果年龄小于15岁,那么返回15岁
    elif (age <= div * 2):
        return div*2 #如果年龄大于15小于等于30岁,则返回30岁
    elif (age <= div * 3):
        return div * 3
    elif (age <= div * 4):
        return div * 4
    elif (age <= div * 5):
        return div * 5
    elif (age <= 110):
        return div * 6
    else:
        return 'Unphysical' #非正常年龄
  • 将分段后的年龄作为新的特征放入特征列表中
代码语言:javascript
复制
df['age'] = np.array([get_age(x) for x in age])
df_age = pd.get_dummies(df.age, prefix = 'age')
df = pd.concat((df, df_age), axis = 1)
df.drop(['age'], axis = 1, inplace = True)

4. 其他特征

  • 在数据探索时,我们发现剩余的特征lables都比较少,故不进一步进行特征提取,只进行one-hot-encoding处理
代码语言:javascript
复制
feat_toOHE = ['gender', 
             'signup_method', 
             'signup_flow', 
             'language', 
             'affiliate_channel', 
             'affiliate_provider', 
             'first_affiliate_tracked', 
             'signup_app', 
             'first_device_type', 
             'first_browser']
#对其他特征进行one-hot-encoding处理
for f in feat_toOHE:
    df_ohe = pd.get_dummies(df[f], prefix=f, dummy_na=True)
    df.drop([f], axis = 1, inplace = True)
    df = pd.concat((df, df_ohe), axis = 1)

4.3 整合提取的所有特征

  • 我们将对session以及train,test文件中提取的特征进行合并
代码语言:javascript
复制
#将对session提取的特征整合到一起
df_all = pd.merge(df, df_agg_sess, how='left')
df_all = df_all.drop(['id'], axis=1) #删除id
df_all = df_all.fillna(-2)  #对没有sesssion data的特征进行缺失值处理

#加了一列,表示每一行总共有多少空值,这也作为一个特征
df_all['all_null'] = np.array([sum(r<0) for r in df_all.values])

5. 模型构建

5.1 数据准备

1. 将train和test数据进行分离操作

  • train_row是之前记录的train数据行数
代码语言:javascript
复制
Xtrain = df_all.iloc[:train_row, :]
Xtest = df_all.iloc[train_row:, :]

2. 将提取的特征生成csv文件

代码语言:javascript
复制
Xtrain.to_csv("Airbnb_xtrain_v2.csv")
Xtest.to_csv("Airbnb_xtest_v2.csv")
#labels.tofile():Write array to a file as text or binary (default)
labels.tofile("Airbnb_ytrain_v2.csv", sep='\n', format='%s') #存放目标变量
  • 读取特征文件
代码语言:javascript
复制
xtrain = pd.read_csv("Airbnb_xtrain_v2.csv",index_col=0)
ytrain = pd.read_csv("Airbnb_ytrain_v2.csv", header=None)
代码语言:javascript
复制
xtrain.head()
代码语言:javascript
复制
ytrain.head()

分析:可以发现经过特征提取后特征文件xtrain扩展为665个特征,ytrain中包含训练集中的目标变量3. 将目标变量进行labels encoding

代码语言:javascript
复制
le = LabelEncoder()
ytrain_le = le.fit_transform(ytrain.values)
  • labels encoding前: ['AU', 'CA', 'DE', 'ES', 'FR', 'GB', 'IT', 'NDF', 'NL', 'PT', 'US','other']
  • labels encoding后: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

4. 提取10%的数据进行模型训练

  • 减少训练模型花费的时间
代码语言:javascript
复制
# Let us take 10% of the data for faster training. 
n = int(xtrain.shape[0]*0.1)
xtrain_new = xtrain.iloc[:n, :]  #训练数据
ytrain_new = ytrain_le[:n]       #训练数据的目标变量

5. StandardScaling the dataset

  • Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance)
代码语言:javascript
复制
X_scaler = StandardScaler()
xtrain_new = X_scaler.fit_transform(xtrain_new)

5.2 评分模型:NDGG

  • NDCG是一种衡量排序质量的评价指标,该指标考虑了所有元素的相关性
  • 由于我们预测的目标变量并不是二分类变量,故我们用NDGG模型来进行模型评分,判断模型优劣
  • 一般二分类变量: 我们习惯于使用 f1 score, precision, recall, auc score来进行模型评分
代码语言:javascript
复制
from sklearn.metrics import make_scorer

def dcg_score(y_true, y_score, k=5):

    """
    y_true : array, shape = [n_samples] #数据
        Ground truth (true relevance labels).
    y_score : array, shape = [n_samples, n_classes] #预测的分数
        Predicted scores.
    k : int
    """
    order = np.argsort(y_score)[::-1] #分数从高到低排序
    y_true = np.take(y_true, order[:k]) #取出前k[0,k)个分数

    gain = 2 ** y_true - 1   

    discounts = np.log2(np.arange(len(y_true)) + 2)
    return np.sum(gain / discounts)


def ndcg_score(ground_truth, predictions, k=5):   

    """
    Parameters
    ----------
    ground_truth : array, shape = [n_samples]
        Ground truth (true labels represended as integers).
    predictions : array, shape = [n_samples, n_classes] 
        Predicted probabilities. 预测的概率
    k : int
        Rank.
    """
    lb = LabelBinarizer()
    lb.fit(range(len(predictions) + 1))
    T = lb.transform(ground_truth)    
    scores = []
    # Iterate over each y_true and compute the DCG score
    for y_true, y_score in zip(T, predictions):
        actual = dcg_score(y_true, y_score, k)
        best = dcg_score(y_true, y_true, k)
        score = float(actual) / float(best)
        scores.append(score)

    return np.mean(scores)

6. 构建模型

6.1 Logistic Regression

代码语言:javascript
复制
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
lr = LogisticRegression(C = 1.0, penalty='l2', multi_class='ovr')
RANDOM_STATE = 2017  #随机种子

#k-fold cross validation(k-折叠交叉验证)
kf = KFold(n_splits=5, random_state=RANDOM_STATE) #分成5个组
train_score = [] 
cv_score = []

# select a k  (value how many y):
k_ndcg = 3 
# kf.split: Generate indices to split data into training and test set.
for train_index, test_index in kf.split(xtrain_new, ytrain_new):
    #训练集数据分割为训练集和测试集,y是目标变量
    X_train, X_test = xtrain_new[train_index, :], xtrain_new[test_index, :]
    y_train, y_test = ytrain_new[train_index], ytrain_new[test_index]

    lr.fit(X_train, y_train)

    y_pred = lr.predict_proba(X_test)
    train_ndcg_score = ndcg_score(y_train, lr.predict_proba(X_train), k = k_ndcg)
    cv_ndcg_score = ndcg_score(y_test, y_pred, k=k_ndcg)

    train_score.append(train_ndcg_score)
    cv_score.append(cv_ndcg_score)

print ("\nThe training score is: {}".format(np.mean(train_score)))
print ("\nThe cv score is: {}".format(np.mean(cv_score)))

The training score is: 0.7595244143892934 The cv score is: 0.7416926026958558

learning curve of logistic regression

  • 观察逻辑回归模型学习曲线的变化 1. 改变逻辑回归参数iteration
代码语言:javascript
复制
# set the iterations
iteration = [1,5,10,15,20, 50, 100]

kf = KFold(n_splits=3, random_state=RANDOM_STATE)

train_score = []
cv_score = []

# select a k:
k_ndcg = 5

for i, item in enumerate(iteration): 

    lr = LogisticRegression(C=1.0, max_iter=item, tol=1e-5, solver='newton-cg', multi_class='ovr') 
    train_score_iter = []
    cv_score_iter = []

    for train_index, test_index in kf.split(xtrain_new, ytrain_new):
        X_train, X_test = xtrain_new[train_index, :], xtrain_new[test_index, :]
        y_train, y_test = ytrain_new[train_index], ytrain_new[test_index]

        lr.fit(X_train, y_train)

        y_pred = lr.predict_proba(X_test)
        train_ndcg_score = ndcg_score(y_train, lr.predict_proba(X_train), k = k_ndcg)
        cv_ndcg_score = ndcg_score(y_test, y_pred, k=k_ndcg)


        train_score_iter.append(train_ndcg_score)
        cv_score_iter.append(cv_ndcg_score)

    train_score.append(np.mean(train_score_iter))
    cv_score.append(np.mean(cv_score_iter))
代码语言:javascript
复制
ymin = np.min(cv_score)-0.05
ymax = np.max(train_score)+0.05

plt.figure(figsize=(9,4))
plt.plot(iteration, train_score, 'ro-', label = 'training')
plt.plot(iteration, cv_score, 'b*-', label = 'Cross-validation')
plt.xlabel("iterations")
plt.ylabel("Score")
plt.xlim(-5, np.max(iteration)+10)
plt.ylim(ymin, ymax)
plt.plot(np.linspace(20,20,50), np.linspace(ymin, ymax, 50), 'g--')
plt.legend(loc = 'lower right', fontsize = 12)
plt.title("Score vs iteration learning curve")

plt.tight_layout()

分析:随着iteration的增大,逻辑回归模型的评分在不断升高,当iteration超过20的时候,模型的评分基本不变

2. 改变数据量大小

代码语言:javascript
复制
# Chaning the sampling size
# set the iter to the best iteration: iter = 20

perc = [0.01,0.02,0.05,0.1,0.2,0.5,1]

kf = KFold(n_splits=3, random_state=RANDOM_STATE)

train_score = []
cv_score = []

# select a k:
k_ndcg = 5

for i, item in enumerate(perc):

    lr = LogisticRegression(C=1.0, max_iter=20, tol=1e-6, solver='newton-cg', multi_class='ovr')
    train_score_iter = []
    cv_score_iter = []

    n = int(xtrain_new.shape[0]*item)
    xtrain_perc = xtrain_new[:n, :]
    ytrain_perc = ytrain_new[:n]


    for train_index, test_index in kf.split(xtrain_perc, ytrain_perc):

        X_train, X_test = xtrain_perc[train_index, :], xtrain_perc[test_index, :]
        y_train, y_test = ytrain_perc[train_index], ytrain_perc[test_index]

        print(X_train.shape, X_test.shape)

        lr.fit(X_train, y_train)

        y_pred = lr.predict_proba(X_test)
        train_ndcg_score = ndcg_score(y_train, lr.predict_proba(X_train), k = k_ndcg)
        cv_ndcg_score = ndcg_score(y_test, y_pred, k=k_ndcg)

        train_score_iter.append(train_ndcg_score)
        cv_score_iter.append(cv_ndcg_score)

    train_score.append(np.mean(train_score_iter))
    cv_score.append(np.mean(cv_score_iter))
代码语言:javascript
复制
ymin = np.min(cv_score)-0.1
ymax = np.max(train_score)+0.1

plt.figure(figsize=(9,4))
plt.plot(np.array(perc)*100, train_score, 'ro-', label = 'training')
plt.plot(np.array(perc)*100, cv_score, 'bo-', label = 'Cross-validation')
plt.xlabel("Sample size (unit %)")
plt.ylabel("Score")
plt.xlim(-5, np.max(perc)*100+10)
plt.ylim(ymin, ymax)

plt.legend(loc = 'lower right', fontsize = 12)
plt.title("Score vs sample size learning curve")

plt.tight_layout()

分析:随着数据量的增加,逻辑回归模型对测试集的预测评分(蓝色线)在不断上升,因为我们在训练模型时只用了10%的数据,如果使用全部的数据,效果可能会更好

6.2 树模型

  • 其中的模型包括DecisionTree,RandomForest,AdaBoost,Bagging,ExtraTree,GraBoost
代码语言:javascript
复制
from sklearn.ensemble import AdaBoostClassifier, BaggingClassifier, ExtraTreesClassifier
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import *
from sklearn.svm import SVC, LinearSVC, NuSVC
LEARNING_RATE = 0.1
N_ESTIMATORS = 50
RANDOM_STATE = 2017
MAX_DEPTH = 9

#建了一个tree字典
clf_tree ={
    'DTree': DecisionTreeClassifier(max_depth=MAX_DEPTH,
                                    random_state=RANDOM_STATE),

    'RF': RandomForestClassifier(n_estimators=N_ESTIMATORS,
                                 max_depth=MAX_DEPTH,
                                 random_state=RANDOM_STATE),

    'AdaBoost': AdaBoostClassifier(n_estimators=N_ESTIMATORS,
                                   learning_rate=LEARNING_RATE,
                                   random_state=RANDOM_STATE),

    'Bagging': BaggingClassifier(n_estimators=N_ESTIMATORS,
                                 random_state=RANDOM_STATE),

    'ExtraTree': ExtraTreesClassifier(max_depth=MAX_DEPTH,
                                      n_estimators=N_ESTIMATORS,
                                      random_state=RANDOM_STATE),

    'GraBoost': GradientBoostingClassifier(learning_rate=LEARNING_RATE,
                                           max_depth=MAX_DEPTH,
                                           n_estimators=N_ESTIMATORS,
                                           random_state=RANDOM_STATE)
}
train_score = []
cv_score = []

kf = KFold(n_splits=3, random_state=RANDOM_STATE)

k_ndcg = 5

for key in clf_tree.keys():

    clf = clf_tree.get(key)

    train_score_iter = []
    cv_score_iter = []

    for train_index, test_index in kf.split(xtrain_new, ytrain_new):

        X_train, X_test = xtrain_new[train_index, :], xtrain_new[test_index, :]
        y_train, y_test = ytrain_new[train_index], ytrain_new[test_index]

        clf.fit(X_train, y_train)

        y_pred = clf.predict_proba(X_test)
        train_ndcg_score = ndcg_score(y_train, clf.predict_proba(X_train), k = k_ndcg)
        cv_ndcg_score = ndcg_score(y_test, y_pred, k=k_ndcg)

        train_score_iter.append(train_ndcg_score)
        cv_score_iter.append(cv_ndcg_score)

    train_score.append(np.mean(train_score_iter))
    cv_score.append(np.mean(cv_score_iter))
代码语言:javascript
复制
train_score_tree = train_score
cv_score_tree = cv_score

ymin = np.min(cv_score)-0.05
ymax = np.max(train_score)+0.05

x_ticks = clf_tree.keys()

plt.figure(figsize=(8,5))
plt.plot(range(len(x_ticks)), train_score_tree, 'ro-', label = 'training')
plt.plot(range(len(x_ticks)),cv_score_tree, 'bo-', label = 'Cross-validation')

plt.xticks(range(len(x_ticks)),x_ticks,rotation = 45, fontsize = 10)
plt.xlabel("Tree method", fontsize = 12)
plt.ylabel("Score", fontsize = 12)
plt.xlim(-0.5, 5.5)
plt.ylim(ymin, ymax)

plt.legend(loc = 'best', fontsize = 12)
plt.title("Different tree methods")

plt.tight_layout()

6.3 SVM模型

  • 根据核函数的不同,又分为:SVM-rbf,SVM-poly,SVM-linear等
代码语言:javascript
复制
TOL = 1e-4
MAX_ITER = 1000

clf_svm = {

    'SVM-rbf': SVC(kernel='rbf',
                   max_iter=MAX_ITER,
                   tol=TOL, random_state=RANDOM_STATE,
                   decision_function_shape='ovr'),     

    'SVM-poly': SVC(kernel='poly',
                   max_iter=MAX_ITER,
                   tol=TOL, random_state=RANDOM_STATE,
                   decision_function_shape='ovr'),     

    'SVM-linear': SVC(kernel='linear',
                      max_iter=MAX_ITER,
                      tol=TOL, 
                      random_state=RANDOM_STATE,
                      decision_function_shape='ovr'),  

    'LinearSVC': LinearSVC(max_iter=MAX_ITER,
                            tol=TOL,
                            random_state=RANDOM_STATE,
                            multi_class = 'ovr')       

train_score_svm = []
cv_score_svm = []

kf = KFold(n_splits=3, random_state=RANDOM_STATE)

k_ndcg = 5

for key in clf_svm.keys():

    clf = clf_svm.get(key)

    train_score_iter = []
    cv_score_iter = []

    for train_index, test_index in kf.split(xtrain_new, ytrain_new):

        X_train, X_test = xtrain_new[train_index, :], xtrain_new[test_index, :]
        y_train, y_test = ytrain_new[train_index], ytrain_new[test_index]

        clf.fit(X_train, y_train)

        y_pred = clf.decision_function(X_test)
        train_ndcg_score = ndcg_score(y_train, clf.decision_function(X_train), k = k_ndcg)
        cv_ndcg_score = ndcg_score(y_test, y_pred, k=k_ndcg)

        train_score_iter.append(train_ndcg_score)
        cv_score_iter.append(cv_ndcg_score)

    train_score_svm.append(np.mean(train_score_iter))
    cv_score_svm.append(np.mean(cv_score_iter))
}
代码语言:javascript
复制
ymin = np.min(cv_score_svm)-0.05
ymax = np.max(train_score_svm)+0.05

x_ticks = clf_svm.keys()

plt.figure(figsize=(8,5))
plt.plot(range(len(x_ticks)), train_score_svm, 'ro-', label = 'training')
plt.plot(range(len(x_ticks)),cv_score_svm, 'bo-', label = 'Cross-validation')

plt.xticks(range(len(x_ticks)),x_ticks,rotation = 45, fontsize = 10)
plt.xlabel("Tree method", fontsize = 12)
plt.ylabel("Score", fontsize = 12)
plt.xlim(-0.5, 3.5)
plt.ylim(ymin, ymax)

plt.legend(loc = 'best', fontsize = 12)
plt.title("Different SVM methods")

plt.tight_layout()

6.4 xgboost

  • kaggle比赛中常用的一个模型
代码语言:javascript
复制
import xgboost as xgb

def customized_eval(preds, dtrain):
    labels = dtrain.get_label()
    top = []
    for i in range(preds.shape[0]):
        top.append(np.argsort(preds[i])[::-1][:5])
    mat = np.reshape(np.repeat(labels,np.shape(top)[1]) == np.array(top).ravel(),np.array(top).shape).astype(int)
    score = np.mean(np.sum(mat/np.log2(np.arange(2, mat.shape[1] + 2)),axis = 1))
    return 'ndcg5', score
# xgboost parameters

NUM_XGB = 200

params = {}
params['colsample_bytree'] = 0.6
params['max_depth'] = 6
params['subsample'] = 0.8
params['eta'] = 0.3
params['seed'] = RANDOM_STATE
params['num_class'] = 12
params['objective'] = 'multi:softprob'   # output the probability instead of class. 
train_score_iter = []
cv_score_iter = []

kf = KFold(n_splits = 3, random_state=RANDOM_STATE)

k_ndcg = 5

for train_index, test_index in kf.split(xtrain_new, ytrain_new):

    X_train, X_test = xtrain_new[train_index, :], xtrain_new[test_index, :]
    y_train, y_test = ytrain_new[train_index], ytrain_new[test_index]

    train_xgb = xgb.DMatrix(X_train, label= y_train)
    test_xgb = xgb.DMatrix(X_test, label = y_test)

    watchlist = [ (train_xgb,'train'), (test_xgb, 'test') ]

    bst = xgb.train(params, 
                     train_xgb,
                     NUM_XGB,
                     watchlist,
                     feval = customized_eval,
                     verbose_eval = 3,
                     early_stopping_rounds = 5)


    #bst = xgb.train( params, dtrain, num_round, evallist )

    y_pred = np.array(bst.predict(test_xgb))
    y_pred_train = np.array(bst.predict(train_xgb))
    train_ndcg_score = ndcg_score(y_train, y_pred_train , k = k_ndcg)
    cv_ndcg_score = ndcg_score(y_test, y_pred, k=k_ndcg)

    train_score_iter.append(train_ndcg_score)
    cv_score_iter.append(cv_ndcg_score)

train_score_xgb = np.mean(train_score_iter)
cv_score_xgb = np.mean(cv_score_iter)

print ("\nThe training score is: {}".format(train_score_xgb))
print ("The cv score is: {}\n".format(cv_score_xgb))

The training score is: 0.803445955699075 The cv score is: 0.7721491602424301

7. 模型比较

代码语言:javascript
复制
model_cvscore = np.hstack((cv_score_lr, cv_score_tree, cv_score_svm, cv_score_xgb))
model_name = np.array(['LinearReg','ExtraTree','DTree','RF','GraBoost','Bagging','AdaBoost','LinearSVC','SVM-linear','SVM-rbf','SVM-poly','Xgboost'])
fig = plt.figure(figsize=(8,4))

sns.barplot(model_cvscore, model_name, palette="Blues_d")

plt.xticks(rotation=0, size = 10)
plt.xlabel("CV score", fontsize = 12)
plt.ylabel("Model", fontsize = 12)
plt.title("Cross-validation score for different models")

plt.tight_layout()

8.总结

  1. 对数据的理解和探索很重要
  2. 可以通过特征工程,进一步提取特征
  3. 模型评估的方法有很多种,选取适宜的模型评估方法
  4. 目前只用了10%的数据进行模型训练,用全部的数据集进行训练,效果可能会更好
  5. 需要深入学习模型算法,学会调参
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-07-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Datawhale 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 背景
  • 2. 数据描述
  • 3. 数据探索
    • 3.1 trainusers2和test_users文件
      • 3.2 sesion文件
      • 4. 特征提取
        • 4.1 对session文件特征提取
          • 4.2 对trian和test文件进行特征提取
            • 4.3 整合提取的所有特征
            • 5. 模型构建
              • 5.1 数据准备
                • 5.2 评分模型:NDGG
                • 6. 构建模型
                  • 6.1 Logistic Regression
                    • 6.2 树模型
                      • 6.3 SVM模型
                        • 6.4 xgboost
                        • 7. 模型比较
                        • 8.总结
                        领券
                        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档