前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >效果惊人!中科院、百度研究院等联合提出UGAN,生成图片难以溯源

效果惊人!中科院、百度研究院等联合提出UGAN,生成图片难以溯源

作者头像
AI科技大本营
发布2019-08-05 14:10:53
5690
发布2019-08-05 14:10:53
举报
作者 | 中国科学院、北京航空航天大学、百度研究院团队

译者 | 凯隐

编辑 | 夕颜

出品 | AI科技大本营(ID: rgznai100)

导读:生成对抗网络(GAN)是近年大热的深度学习模型,中国科学院相关团队注意到,在多领域图片转换任务中,生成图片中会残留一些源类别特征,通俗来讲就是和输入源图片或多或少都有相似之处。针对这个问题,中国科学院、北京航空航天大学、百度研究院团队联合提出了一个神奇的 UGAN 模型,它可以去除生成图片中保留的源类别信息,使得生成图片的源类别变得更加难以追踪,即让生成图片的伪装性更强,掩盖原图片的“遗传”信息,使其看起来与源图相似性变弱,甚至完全不相同。

什么是多领域图像转换?

图像转换代表一类视觉和图像问题,主要目的是学习输入图像从一个类别域到另一个类别域的转换,例如表情转换,输入人脸面无表情的图像,输出该人脸在生气、开心、难过、害怕等一系列表情下对应的图像。风格转换,输出原始图片在不同亮度、光照等风格下的转换图片。通常每一中类型的转换都需要一个专门的模型去处理(例如 CycleGAN[1]),这样做非常低效,StarGAN[2] 进一步实现了用统一的框架来完成多个不同领域之间的转换,即多领域图像转换。

生成图片的源特征残留问题

类似 StarGAN 的多领域图像转换模型,得到的生成图片(translated images)往往会保留原始类别的特征,因此,本文提出了 Untraceble GAN(UGAN),即无法溯源的GAN模型,能解决源特征残留问题,如下图所示:

图1 UGAN和StarGAN的对比效果图

在年龄转换(Aging),化妆风格转换(makeup),表情转换(Expression)三个不同的任务中,UGAN 的转换程度都要比StartGAN更彻底,例如在年龄转换中,StarGAN 的结果看起来仍然像成年人而 UGAN 的结果更像小孩。这表明 UGAN 在生成目标类别特征的同时,还能去除原始特征,这使得生成图片的源类别变得更加难以追踪。在结构上,UGAN 额外包含了一个源类别分类器,用来判别生成图片从哪个源类别转换而来,这有助于了解生成图片是否保留了源类别的特征。

UGAN 网络结构

图2 UGAN 网络结构

网络结构如图 2,输入数据的是源图像和目标类别(Target Condition),首先经过转换器 G 得到生成图片(Output Image),之后再和源类别信息(Source Condition)以及真实图片(Real Image)一起输入到判别网络 D 中。不同于传统 GNN,判别网络 D 需要连接两个分类器(黄色模块),不仅需要真实性判别器(Authenticity Classifier)来判断图片是真实图片还是生成图片,还需要通过源类别分类器(Source Cclassifier)来确定生成图片对应的输入图片的类别(源类别)。

此外,生成图片和源类别还作为转换器 G 的输入,用于重构源输入图片。因此,转换器 G 由三部分监督:首先通过训练 G 来迷惑判别模型 D 的真实性判别器,这是生成对抗网络的基本功能;接着根据生成图片和源类别,来训练 G 重构输入图片,这是为了保证网络的循环稳定性[1];最后训练 G 来迷惑源类别分类器,让其相信生成图片的是从目标类别转换而来的,这是为了进一步去除生成图片中的源类别信息,使其更贴近目标类别。

由于添加了源类别作为监督信息,因此随着对抗训练的进行,生成图片能够逐渐摆脱源类别所具有的特征,而更贴近目标类别。

UGAN的三个目标函数

要通过真实性分类器,源类别分类器,图片重构器对转换器G进行监督学习,就需要设计相应的目标函数(损失函数)。

真实性分类器

对于真实性分类器 Da ,作者参考了WGAN-gp[3]中提出的对抗损失函数来限制生成图片和目标类别的联合分布:

公式 1 是判别模型 D 的目标函数,公式 2 是生成器 G 的目标函数。x 和 y 代表图片和相应类别, x 和 y 都分别服从分布 q(x) 和 q(y),公式1类似交叉熵损失函数, -Ex~q(x)[Da(x)] 表示输入图片 x 被分类正确时的奖励,相应的的第二部分表示分类成生成器输出类别时的惩罚,第三部分则是一个梯度惩罚项,通过一阶莱布尼茨函数来强化判别能力。公式2则正好是公式1取反,也就是说判别模型表现越好,生成模型表现越差。

图片重构器

训练图片重构器是为了提高网络的循环稳定性(Cycle Consistence),这一部分主要参考了工作[1],目标函数为:

即尽量保证重构图片与原始输入图片相同,这里带下标 s 的变量表示源图片或源类型,带下标 t的表示生成图片或目标类型。

源类别分类器

训练源类别分类器 Ds 是为了解决源特征遗留的问题,对于真实的图片而言,源类别和目标类别相同,而对于生成图片,分类器应该准确识别其源类别。相反,转换器 G 就是要让分类器无法找到生成图片的真实源类别,而是将错误的类别作为其源类别。因此二者的目标函数也存在负相关的关系:

其中公式(4)是源类别分类器的损失函数,(5)是生成器 G 的损失函数。形式上和真实性分类器相同。然而目标类型yt的特征混合了从yt采样得到的真实图片xt以及生成图片的特征,因此生成的图片特征并不纯净,为了完全从目标类型yt来合成图片,用额外的参数C来区别真实图片和生成图片:

这使得 Ds 不仅能确定图片的源类别,还能判断目标图片是真实图片还是生成的假图片,相反,也使得生成器 G 生成的图片变得更加难以追踪。

最终目标函数

将各个分类器的损失函数叠加,以及对应的生成器损失函叠加,就能得到最终的目标函数:

实验步骤及结果

该团队主要在年龄转换、化妆风格转换、表情转换三个任务上开展对比实验,相应数据集是 Face aging、MAKEUP-A5 和 CFEE。由于本文主要是解决 StarGAN[2] 中存在的源特征存留问题,因此所有实验的基线对比工作都是 StarGAN。实验的评价指标有 Intra FIDs、AMT、余弦相似度。年龄转换相关实验额外添加 CAAE 和 C-GAN 作为基线对比。实验结果如下:

可以看到,在各项任务和指标下,UGAN 都优于 StarGAN。此外,直观地观察生成图片,可以发现 UGAN 生成的图片更好的去除了原始输入图片的特征,具有更强的源类别特征去除能力:

UGAN 在去除源类别信息上效果显著,使得生成图片技术更加成熟,生成图像伪装性更强,为 GAN 的研究打开了新的思路。

参考论文:

[1] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image to image translation using cycle-consistent adversarial networks.arXiv:1703.10593, 2017.

[2] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. Stargan: Unified generative adversarial networks for multidomain image-to-image translation. In CVPR, 2018.

[3] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasserstein gans. In NIPS, 2017.

原文链接:https://arxiv.org/pdf/1907.11418.pdf

(*本文为 AI科技大本营编译文章,转载请联系微信 1092722531)

精彩推荐

60+技术大咖与你相约 2019 AI ProCon!大会早鸟票已售罄,优惠票速抢进行中......2019 AI开发者大会将于9月6日-7日在北京举行,这一届AI开发者大会有哪些亮点?一线公司的大牛们都在关注什么?AI行业的风向是什么?2019 AI开发者大会,倾听大牛分享,聚焦技术实践,和万千开发者共成长。

推荐阅读

你点的每个“在看”,我都认真当成了喜欢

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-07-31,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI科技大本营 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 什么是多领域图像转换?
  • 生成图片的源特征残留问题
  • UGAN 网络结构
  • UGAN的三个目标函数
    • 真实性分类器
      • 图片重构器
        • 源类别分类器
          • 最终目标函数
          • 实验步骤及结果
          相关产品与服务
          灰盒安全测试
          腾讯知识图谱(Tencent Knowledge Graph,TKG)是一个集成图数据库、图计算引擎和图可视化分析的一站式平台。支持抽取和融合异构数据,支持千亿级节点关系的存储和计算,支持规则匹配、机器学习、图嵌入等图数据挖掘算法,拥有丰富的图数据渲染和展现的可视化方案。
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档