前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >支招 | 使用Pytorch进行文本分类

支招 | 使用Pytorch进行文本分类

作者头像
AI研习社
发布2019-09-17 17:04:34
2.1K0
发布2019-09-17 17:04:34
举报
文章被收录于专栏:AI研习社AI研习社AI研习社
本文为 AI 研习社社区用户 @Dendi 的博客文章,欢迎扫描底部社区名片访问 @Dendi 的主页,查看更多内容。

01. BILSTM+ATTENTION

网络结构

代码实现

Attention计算

  1. 将BILSTM网络输出的结果(shape:[batch_size, time_step, hidden_dims * num_directions(=2)])拆成两个大小为[batch_size, time_step, hidden_dims]的Tensor;
  2. 将第一步拆出的两个Tensor进行相加运算得到h(shape:[batch_size, time_step, hidden_dims]);
  3. 将h作为输入,通过self.attention_layer得到attention的计算向量atten_w(shape:[batch_size, time_step, hidden_dims]);
  4. 将第二步的h进行tanh()激活,得到m(shape:[batch_size, time_step, hidden_dims]),留待后续进行残差计算;
  5. 将atten_w的2、3维度进行调换,并与m进行矩阵的乘法运算,得到atten_context(shape:[batch_size, time_step, time_step]);
  6. 将atten_context最后一维进行softmax计算,得到当前时刻相对于所有时刻的权重:softmax_w(shape:[batch_size, time_step, time_step]);
  7. 将h的2、3维度进行调换,并与softmax_w进行矩阵运算,得到基于权重的context(shape:[batch_size, hidden_dims, time_step]);
  8. 将h的2、3维度进行调换,并与context进行求和运算,得到context_with_attn(shape:[batch_size, hidden_dims, time_step]);
  9. 将context_with_attn的最后一维进行求和,得到result(shape:[batch_size, hidden_dims]);
  10. 计算结束,返回result;

模型效果

1层BILSTM在训练集准确率:99.8%,测试集准确率:96.5%;

2层BILSTM在训练集准确率:99.9%,测试集准确率:97.3%;

调参

dropout的值要在 0.1 以下(经验之谈,笔者在实践中发现,dropout取0.1时比dropout取0.3时在测试集准确率能提高0.5%)。

02. Transformer

前言

文本分类不是生成式的任务,因此只使用Transformer的编码部分(Encoder)进行特征提取。如果不熟悉Transformer模型的原理请移步:https://blog.csdn.net/dendi_hust/article/details/98759771

网络结构

代码实现

  • 自注意力模型:
class TextSlfAttnNet(nn.Module):
    ''' 自注意力模型 '''

    def __init__(self,
                 config: TextSlfAttnConfig,
                 char_size=5000,
                 pinyin_size=5000):
        super(TextSlfAttnNet, self).__init__()
        # 字向量
        self.char_embedding = nn.Embedding(char_size, config.embedding_size)
        # 拼音向量
        self.pinyin_embedding = nn.Embedding(pinyin_size, config.embedding_size)
        # 位置向量
        self.pos_embedding = nn.Embedding.from_pretrained(
            get_sinusoid_encoding_table(config.max_sen_len, config.embedding_size, padding_idx=0),
            freeze=True)

        self.layer_stack = nn.ModuleList([
            EncoderLayer(config.embedding_size, config.hidden_dims, config.n_heads, config.k_dims, config.v_dims, dropout=config.keep_dropout)
            for _ in range(config.hidden_layers)
        ])

        self.fc_out = nn.Sequential(
            nn.Dropout(config.keep_dropout),
            nn.Linear(config.embedding_size, config.hidden_dims),
            nn.ReLU(inplace=True),
            nn.Dropout(config.keep_dropout),
            nn.Linear(config.hidden_dims, config.num_classes),

        )


    def forward(self, char_id, pinyin_id, pos_id):
        char_inputs = self.char_embedding(char_id)
        pinyin_iputs = self.pinyin_embedding(pinyin_id)

        sen_inputs = torch.cat((char_inputs, pinyin_iputs), dim=1)
        # sentence_length = sen_inputs.size()[1]
        # pos_id = torch.LongTensor(np.array([i for i in range(sentence_length)]))
        pos_inputs = self.pos_embedding(pos_id)
        # batch_size * sen_len * embedding_size
        inputs = sen_inputs + pos_inputs

        for layer in self.layer_stack:
            inputs, _ = layer(inputs)

        enc_outs = inputs.permute(0, 2, 1)
        enc_outs = torch.sum(enc_outs, dim=-1)
        return self.fc_out(enc_outs)
  • 编码层(EncoderLayer)

class EncoderLayer(nn.Module):
    '''编码层'''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
        '''

        :param d_model: 模型输入维度
        :param d_inner: 前馈神经网络隐层维度
        :param n_head:  多头注意力
        :param d_k:     键向量
        :param d_v:     值向量
        :param dropout:
        '''
        super(EncoderLayer, self).__init__()
        self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)

    def forward(self, enc_input, non_pad_mask=None, slf_attn_mask=None):
        '''

        :param enc_input:
        :param non_pad_mask:
        :param slf_attn_mask:
        :return:
        '''
        enc_output, enc_slf_attn = self.slf_attn(enc_input, enc_input, enc_input, mask=slf_attn_mask)
        if non_pad_mask is not None:
            enc_output *= non_pad_mask

        enc_output = self.pos_ffn(enc_output)
        if non_pad_mask is not None:
            enc_output *= non_pad_mask
        return enc_output, enc_slf_attn
  • 多头注意力(`MultiHeadAttention`)
class MultiHeadAttention(nn.Module):
    '''
        “多头”注意力模型
    '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        '''

        :param n_head: “头”数
        :param d_model: 输入维度
        :param d_k: 键向量维度
        :param d_v: 值向量维度
        :param dropout:
        '''
        super(MultiHeadAttention, self).__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v
        # 产生 查询向量q,键向量k, 值向量v
        self.w_qs = nn.Linear(d_model, n_head * d_k)
        self.w_ks = nn.Linear(d_model, n_head * d_k)
        self.w_vs = nn.Linear(d_model, n_head * d_v)

        nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))

        self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
        self.layer_normal = nn.LayerNorm(d_model)

        self.fc = nn.Linear(n_head * d_v, d_model)
        nn.init.xavier_normal_(self.fc.weight)

        self.dropout = nn.Dropout(dropout)
        
      def forward(self, q, k, v, mask=None):
        '''
        计算多头注意力
        :param q: 用于产生  查询向量
        :param k: 用于产生  键向量
        :param v:  用于产生 值向量
        :param mask:
        :return:
        '''
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head

        sz_b, len_q, _ = q.size()
        sz_b, len_k, _ = k.size()
        sz_b, len_v, _ = v.size()

        residual = q

        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # (n*b) x lq x dk
        q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k)
        # (n*b) x lk x dk
        k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k)
        # (n*b) x lv x dv
        v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v)

        # mask = mask.repeat(n_head, 1, 1)  # (n*b) x .. x ..
        #
        output, attn = self.attention(q, k, v, mask=None)
        # (n_heads * batch_size) * lq * dv
        output = output.view(n_head, sz_b, len_q, d_v)
        # batch_size * len_q * (n_heads * dv)
        output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1)
        output = self.dropout(self.fc(output))
        output = self.layer_normal(output + residual)
        return output, attn
  • 前馈神经网络(`PositionwiseFeedForward`)
class PositionwiseFeedForward(nn.Module):
    '''
        前馈神经网络
    '''

    def __init__(self, d_in, d_hid, dropout=0.1):
        '''

        :param d_in:    输入维度
        :param d_hid:   隐藏层维度
        :param dropout:
        '''
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Conv1d(d_in, d_hid, 1)
        self.w_2 = nn.Conv1d(d_hid, d_in, 1)
        self.layer_normal = nn.LayerNorm(d_in)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        residual = x
        output = x.transpose(1, 2)
        output = self.w_2(F.relu(self.w_1(output)))
        output = output.transpose(1, 2)
        output = self.dropout(output)
        output = self.layer_normal(output + residual)
        return output
  • 位置函数
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
    '''
    计算位置向量
    :param n_position:      位置的最大值
    :param d_hid:           位置向量的维度,和字向量维度相同(要相加求和)
    :param padding_idx: 
    :return: 
    '''

    def cal_angle(position, hid_idx):
        return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)

    def get_posi_angle_vec(position):
        return [cal_angle(position, hid_j) for hid_j in range(d_hid)]

    sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])

    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

    if padding_idx is not None:
        # zero vector for padding dimension
        sinusoid_table[padding_idx] = 0.

    return torch.FloatTensor(sinusoid_table)

实践经验

在分类任务中,与`BILSTM+ATTENTION`相比:

1. 模型比`LSTM`大很多,同样的任务`LSTM`模型6M左右,`Transformer`模型55M;

2. 收敛速度比较慢;

3. 超参比较多,不易调参,但同时也意味着弹性比较大;

4. 效果和`BILSTM`模型差不多。

03. TextCNN

网络结构

代码实现

class TextCNN(nn.Module):


def __init__(self,
                 config:TCNNConfig,
                 char_size = 5000, pinyin_size=5000):
        super(TextCNN, self).__init__()
        self.learning_rate = config.learning_rate
        self.keep_dropout = config.keep_dropout
        self.sequence_length = config.sequence_length
        self.char_embedding_size = config.char_embedding_size
        self.pinyin_embedding_size = config.pinyin_embedding_size
        self.filter_list = config.filter_list
        self.out_channels = config.out_channels
        self.l2_reg_lambda = config.l2_reg_lambda
        self.model_dir = config.model_dir
        self.data_save_frequency = config.data_save_frequency
        self.model_save_frequency = config.model_save_frequency
        self.char_size = char_size
        self.pinyin_size = pinyin_size
        self.embedding_size = self.char_embedding_size
        self.total_filters_size = self.out_channels * len(self.filter_list)
        self.build_model()


def build_model(self):
# 初始化字向量
        self.char_embeddings = nn.Embedding(self.char_size, self.char_embedding_size)
# 字向量参与更新
        self.char_embeddings.weight.requires_grad = True
# 初始化拼音向量
        self.pinyin_embeddings = nn.Embedding(self.pinyin_size, self.pinyin_embedding_size)
        self.pinyin_embeddings.weight.requires_grad = True
        self.conv_list = nn.ModuleList()


        conv_list = [nn.Sequential(
            nn.Conv1d(self.embedding_size, self.out_channels, filter_size),
            nn.BatchNorm1d(self.out_channels),
            nn.ReLU(inplace=True)
) for filter_size in self.filter_list]
# 卷积列表
        self.conv_lists_layer = nn.ModuleList(conv_list)






        self.output_layer = nn.Sequential(
            nn.Dropout(self.keep_dropout),
            nn.Linear(self.total_filters_size, self.total_filters_size),
            nn.ReLU(inplace=True),
            nn.Linear(self.total_filters_size, 2)
)


def forward(self, char_id, pinyin_id):
# char_id = torch.from_numpy(np.array(input[0])).long()
# pinyin_id = torch.from_numpy(np.array(input[1])).long()
        pooled_outputs = []
        sen_char = self.char_embeddings(char_id)
        sen_pinyin = self.pinyin_embeddings(pinyin_id)
        sen_embed = torch.cat((sen_char, sen_pinyin), dim=1)
# 转换成 (N C SEN_LEN) 的形式
        sen_embed = sen_embed.permute(0, 2, 1)
for conv in self.conv_lists_layer:
# print(sen_embed.shape)
            conv_output = conv(sen_embed)
            max_polling_output = torch.max(conv_output, dim=2)
            pooled_outputs.append(max_polling_output[0])


        total_pool = torch.cat(pooled_outputs, 1)
        flatten_pool = total_pool.view(-1, self.total_filters_size)
        fc_output = self.output_layer(flatten_pool)
return fc_output
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2019-09-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI研习社 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 代码实现
  • Attention计算
  • 模型效果
  • 前言
  • 网络结构
  • 代码实现
  • 实践经验
  • 网络结构
  • 代码实现
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档