前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >科学提升认知方法之贝叶斯公式

科学提升认知方法之贝叶斯公式

原创
作者头像
江帅帅
修改2020-06-04 10:28:46
9410
修改2020-06-04 10:28:46
举报
文章被收录于专栏:大数据工程师

本篇文章将从贝叶斯公式出发,探究贝叶斯到底是啥,以及其在认知层面的巨大作用。不过据说每出现 1 个公式,文章阅读将下降 1/3。

华为大佬说:人工智能就是统计学。在我眼中,贝叶斯公式就是统计学走向机器学习的起点。

贝叶斯公式 

贝叶斯定理(Bayes’s Rule):如果有k个相互独立事件 A1,A2···,Ak并且,P (A1) + P(A2) + ... + p(Ak)= 1 和一个可以观测到的事件 B,那么有:

这个就是贝叶斯公式,相当简洁。

公式中有几个关键概念: P(A)为先验概率,即在观察事件B之前得到的事件A的假设概率 P(A|B) 为后验概率,即在观察事件B后得到新数据后计算该假设A的概率 P(B|A)为似然度,即在该假设A下得到这一观察数据 B 的概率 P(B)为标准化常量,即在任何假设下得到这一观察数据 B 的概率

用一句人话表达则是:

后验概率 = 先验概率×似然度

说到贝叶斯,必然离不开条件概率。

01 /  条件概率

条件概率的公式

条件概率翻译过来就是事件B发生条件下A发生的概率,等于 AB 同时发生的概率比上 B 发生的概率。看着和贝叶斯及其相似, 实际上贝叶斯公式也是通过条件概率来证明的,具体就不赘述了。

02 /  贝叶斯公式 VS 条件概率

条件概率是频率统计思维,通过已知的信息去计算事件出现概率,我们称之为正向概率;贝叶斯公式反其道而行之,通过实验结果去反推出现实验结果的原因,我们称之为逆概率

上面这段话听着太拗口。我们用经典的摸球行为进行说明。

1.选择略微复杂点的场景:有两个桶,A 桶中有白球 7 个,黑球 3 个;B 桶中有白球 3 个,黑球 7 个。随机选择一个桶,有放回的抓球。

2.条件概率解决的问题是:摸到白球的概率是多少?

3.贝叶斯公式解决的问题是:我们摸 5 次,出现 3 次白球,2 次黑球,从 A 桶摸球的概率。

条件概率解法:

通过先验知识,我们可以知道随机选择一个桶概率 P(A)=P(B)=0.5 通过频率统计知识,我们可以算出条件概率 P(白球|A)=0.7 P(白球|B)=0.3 因此在已知知识的情况下,我们预测摸到白球的概率 0.5X0.7 + 0.3X0.7 = 0.5

贝叶斯公式解法:

那贝叶斯需要计算的是 P(A|x 球),出现x颜色球条件下选择A桶的概率。我们从第一次摸白球开始计算。 P(A|白球 1) = P(A) x P(白球|A)/P(白球) = 0.5 x 0.7/0.5 = 0.7 这个结果的含义是第一次出现白球,则我们随机选择 A 桶的概率将从 0.5 变为 0.7

同样的计算第二次选择白球的概率 P(A|白球 2) = P(A) x P(白球|A)/P(白球) = 0.7 x 0.7/(0.7x0.7 + 0.3x0.3) = 0.8448 重复计算下来,可以得到 A 桶的概率是 0.7 即可以理解为每次不同的观察结果,对于原因会产生影响。白球增加 A 桶的概率,黑球减少 A 桶的概率。

可以看到贝叶斯更加符合我们认知世界的方式。现实世界中,我们往往能观察到大量的现象,我们更加关心现象背后的原因。比如一段文本出现大量的特征,我们会去判断是不是垃圾邮件;比如一个女生同意和你吃饭,是不是对你有好感。

贝叶斯与认知 

上面的例子偏向于太学术。按照人话来看贝叶斯公式其实就是后验概率 = 先验概率×似然度。 简单的,我们认知一个新的事物前,先验概率就是我们的感性认知。似然度则是我们需要深度思考,去认真对待的调节因子。

可以看到:

似然度 > 1, 加强先验概率/感性认知

似然度 = 1,后验概率=先验概率

似然度 < 1, 减弱先验概率/感性认知

从上面的例子可以看到,似然度的影响因子主要有两个:一是增加新数据的量,二是增加新数据的质。

依然举个栗子: 男同学追女同学,总会好奇女孩子是否对自己有兴趣。

自恋的同学会说,我的女神一直看我,肯定对我有好感。

理性的同学将这个场景转化为贝叶斯公式:P(好感|看我)= 先验感觉 * 似然度。 从理性角度,先验经验“看我和对我有好感”其实没有太多必然联系,因此概率上可以按 0.5。我们为了求证 P(好感|看我)确实很高,我们就需要更多的观察数据来支持我们的结论。

比如女生是高冷女孩,那么她认真看你,这个新增的数据代表每次看你的质量是很高的,当然似然度会大于 1. 如果女生也经常盯着男生看,但是看我的次数更多,这个其实是增加了数据的量,似然度也会大于 1。 因此理性的人判断 P(好感|看我) 会比较高。

可以看到自恋的同学是将先验经验设置得太高,以至于忽略了似然度的观察,理性的同学弱化先验经验,加强了似然函数。这其实对应了两类人,强经验弱似然函数和弱经验强似然函数。如下图

两种人不能说谁优于谁,强经验的人,后验概率的波动较小。弱经验的人,根据贝叶斯公式,更利于输入新的数据,完成后验概率的更新。

总结 

2020 年,提升认知成为共识。按照贝叶斯定理,处于认知更新的我们,应该弱化我们的经验,观察世界强化似然度,从而更新自己的观点。像乔帮主所说:stay hungry。

在几百年前,贝叶斯就给出了从逆概率思考的科学框架,实在是佩服。

  领取更多视频及资料
领取更多视频及资料

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档