AI科技评论报道
「领域泛化 (Domain Generalization, DG)」 是近几年非常热门的一个研究方向。它研究的问题是从若干个具有不同数据分布的数据集(领域)中学习一个泛化能力强的模型,以便在 「未知 (Unseen)」 的测试集上取得较好的效果。
本文介绍DG领域的第一篇综述文章《Generalizing to Unseen Domains: A Survey on Domain Generalization》。该论文一共调研了 「159」 篇文献,其中直接与领域泛化相关的有 「90」 篇。
文章从问题定义、理论分析、方法总结、数据集和应用介绍、未来研究方向等几大方面对领域泛化问题进行了详细的概括和总结。
1
问题定义
领域泛化问题与领域自适应 (Domain Adaptation,DA)最大的不同:DA在训练中,源域和目标域数据均能访问(无监督DA中则只有无标记的目标域数据);而在DG问题中,我们只能访问若干个用于训练的源域数据,测试数据是不能访问的。毫无疑问,DG是比DA更具有挑战性和实用性的场景:毕竟我们都喜欢“一次训练、到处应用”的足够泛化的机器学习模型。
例如,在下图中,DA问题假定训练集和测试集都可以在训练过程中被访问,而DG问题中则只有训练集。
DG问题的示意图如下所示,其形式化定义如下:
DG不仅与DA问题有相似之处,其与多任务学习、迁移学习、元学习、终身学习等,都有一些类似和差异之处。我们在下表中对它们的差异进行了总结。
2
理论和方法
理论
我们从Domain adaptation理论出发,分析影响不同领域学习结果的因素,如H-divergence、
等,继而过渡到领域Domain generalization问题中,分析影响模型泛化到新领域的因素。从理论上总结了领域泛化问题的重要结果,为今后进行相关研究指明了理论方向。
详细结果请参考原文第3部分。
领域泛化方法是我们的核心。我们将已有的领域泛化方法按照数据操作、表征学习、学习策略分为三大方面,如下图所示。
其中:
在文章中,我们对每大类方法都进行了详细地介绍与总结。
3
应用与数据集
领域泛化问题在众多领域都得到了广泛应用。大多数已有工作偏重于设计更好的DG方法,因此,其往往都在图像分类数据上进行评估。除此之外,DG方法还被应用于行人再识别(Re-ID)、语义分割、街景识别、视频理解等计算机视觉的主流任务中。
特别地,DG方法被广泛应用于健康医疗领域,例如帕金森病识别、组织分割、X光胸片识别、以及震颤检测等。
在自然语言处理领域,DG被用于情感分析、语义分割、网页分类等应用。
DG也在强化学习、自动控制、故障检测、语音检测、物理学、脑机接口等领域中得到了广泛应用。
下图展示了领域泛化问题中流行的标准数据集。
4
未来挑战
我们对DG进行以下展望: