前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【深度学习入门案例】波士顿房价预测

【深度学习入门案例】波士顿房价预测

作者头像
川川菜鸟
发布2021-10-19 11:14:59
1.3K0
发布2021-10-19 11:14:59
举报

人工智能,机器学习,深度学习

做个简单介绍:三者的关系如 图1 所示,即:人工智能 > 机器学习 > 深度学习。

在这里插入图片描述
在这里插入图片描述

深度学习设计框架:

在这里插入图片描述
在这里插入图片描述

环境查看

代码语言:javascript
复制
import paddle
import numpy as np
import os
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

print(paddle.__version__)

返回:

在这里插入图片描述
在这里插入图片描述

数据处理

代码语言:javascript
复制
在这里插入代码片

数据下载

如果你还没安装wget,点击教程安装:window配置安装wget 下载数据:

代码语言:javascript
复制
wget https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data -O housing.data 

返回:

在这里插入图片描述
在这里插入图片描述

开始处理

代码语言:javascript
复制
def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ', dtype=np.float32)

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                                 training_data.sum(axis=0) / training_data.shape[0]
    
    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data

模型设计

两步走: 定义init函数:在类的初始化函数中声明每一层网络的实现函数。在房价预测模型中,只需要定义一层全连接层,模型结构和使用Python和Numpy构建神经网络模型》章节模型保持一致。 定义forward函数:构建神经网络结构,实现前向计算过程,并返回预测结果,在本任务中返回的是房价预测结果。

代码语言:javascript
复制
class Regressor(paddle.nn.Layer):

    # self代表类的实例自身
    def __init__(self):
        # 初始化父类中的一些参数
        super(Regressor, self).__init__()
        
        # 定义一层全连接层,输入维度是13,输出维度是1
        self.fc = Linear(in_features=13, out_features=1)
    
    # 网络的前向计算
    def forward(self, inputs):
        x = self.fc(inputs)
        return x

训练配置

配置有如下四步:

在这里插入图片描述
在这里插入图片描述

1.声明定义好的回归模型Regressor实例,并将模型的状态设置为训练。 2.使用load_data函数加载训练数据和测试数据。 3.设置优化算法和学习率,优化算法采用随机梯度下降SGD,学习率设置为0.01。 代码为:

代码语言:javascript
复制
# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

注意: 模型实例有两种状态:训练状态.train()和预测状态.eval()。训练时要执行正向计算和反向传播梯度两个过程,而预测时只需要执行正向计算,为模型指定运行状态

训练过程

代码语言:javascript
复制
EPOCH_NUM = 10   # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小

# 定义外层循环
for epoch_id in range(EPOCH_NUM):
    # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
    np.random.shuffle(training_data)
    # 将训练数据进行拆分,每个batch包含10条数据
    mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
    # 定义内层循环
    for iter_id, mini_batch in enumerate(mini_batches):
        x = np.array(mini_batch[:, :-1]) # 获得当前批次训练数据
        y = np.array(mini_batch[:, -1:]) # 获得当前批次训练标签(真实房价)
        # 将numpy数据转为飞桨动态图tensor形式
        house_features = paddle.to_tensor(x)
        prices = paddle.to_tensor(y)
        
        # 前向计算
        predicts = model(house_features)
        
        # 计算损失
        loss = F.square_error_cost(predicts, label=prices)
        avg_loss = paddle.mean(loss)
        if iter_id%20==0:
            print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))
        
        # 反向传播
        avg_loss.backward()
        # 最小化loss,更新参数
        opt.step()
        # 清除梯度
        opt.clear_grad()

返回:

在这里插入图片描述
在这里插入图片描述

保存模型

将模型当前的参数数据model.state_dict()保存到文件中(通过参数指定保存的文件名 LR_model),以备预测或校验的程序调用。 代码为:

代码语言:javascript
复制
# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

测试模型

通过load_one_example函数实现从数据集中抽一条样本作为测试样本,具体实现代码如下所示。

代码语言:javascript
复制
def load_one_example():
    # 从上边已加载的测试集中,随机选择一条作为测试数据
    idx = np.random.randint(0, test_data.shape[0])
    idx = -10
    one_data, label = test_data[idx, :-1], test_data[idx, -1]
    # 修改该条数据shape为[1,13]
    one_data =  one_data.reshape([1,-1])

    return one_data, label
 # 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()

# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式 
one_data = paddle.to_tensor(one_data)
predict = model(one_data)

# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]

print("Inference result is {}, the corresponding label is {}".format(predict.numpy(), label))

返回:

在这里插入图片描述
在这里插入图片描述

通过比较“模型预测值”和“真实房价”可见,模型的预测效果与真实房价接近。

参考资料

百度深度学习飞桨:

代码语言:javascript
复制
https://www.paddlepaddle.org.cn/

完整源码

代码语言:javascript
复制
# coding=gbk
"""
作者:川川
@时间  : 2021/8/29 15:40
群:970353786
"""
#加载飞桨、Numpy和相关类库
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import numpy as np


def load_data():
    # 从文件导入数据
    datafile = './housing.data'
    data = np.fromfile(datafile, sep=' ', dtype=np.float32)

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                     'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \
                               training_data.sum(axis=0) / training_data.shape[0]

    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data


class Regressor(paddle.nn.Layer):

    # self代表类的实例自身
    def __init__(self):
        # 初始化父类中的一些参数
        super(Regressor, self).__init__()

        # 定义一层全连接层,输入维度是13,输出维度是1
        self.fc = Linear(in_features=13, out_features=1)

    # 网络的前向计算
    def forward(self, inputs):
        x = self.fc(inputs)
        return x
# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

EPOCH_NUM = 10  # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小

# 定义外层循环
for epoch_id in range(EPOCH_NUM):
    # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
    np.random.shuffle(training_data)
    # 将训练数据进行拆分,每个batch包含10条数据
    mini_batches = [training_data[k:k + BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
    # 定义内层循环
    for iter_id, mini_batch in enumerate(mini_batches):
        x = np.array(mini_batch[:, :-1])  # 获得当前批次训练数据
        y = np.array(mini_batch[:, -1:])  # 获得当前批次训练标签(真实房价)
        # 将numpy数据转为飞桨动态图tensor形式
        house_features = paddle.to_tensor(x)
        prices = paddle.to_tensor(y)

        # 前向计算
        predicts = model(house_features)

        # 计算损失
        loss = F.square_error_cost(predicts, label=prices)
        avg_loss = paddle.mean(loss)
        if iter_id % 20 == 0:
            print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))

        # 反向传播
        avg_loss.backward()
        # 最小化loss,更新参数
        opt.step()
        # 清除梯度
        opt.clear_grad()

# 保存模型
# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

##测试模型
def load_one_example():
    # 从上边已加载的测试集中,随机选择一条作为测试数据
    idx = np.random.randint(0, test_data.shape[0])
    idx = -10
    one_data, label = test_data[idx, :-1], test_data[idx, -1]
    # 修改该条数据shape为[1,13]
    one_data =  one_data.reshape([1,-1])

    return one_data, label

# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()

# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式
one_data = paddle.to_tensor(one_data)
predict = model(one_data)

# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]

print("Inference result is {}, the corresponding label is {}".format(predict.numpy(), label))

希望能帮到你))

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-08-29 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 人工智能,机器学习,深度学习
  • 环境查看
  • 数据处理
    • 数据下载
      • 开始处理
        • 模型设计
          • 训练配置
            • 训练过程
              • 保存模型
                • 测试模型
                  • 参考资料
                  • 完整源码
                  领券
                  问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档