大家好,又见面了,我是你们的朋友全栈君。 遗传算法实例及MATLAB程序解析
遗传算法Genetic Algorithms,GA)是一种基于自然选择原理和自然遗传机制的搜索(寻优)算法,它是模拟自然界中的生命进化机制,在人工系统中实现特定目标的优化。遗传算法的实质是通过群体搜索技术,根据适者生存的原则逐代进化,最终得到最优解或准最优解。它必须做以下操作∶初始群体的产生、求每一个体的适应度、根据适者生存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染色体的基因并随机变异某些染色体的基因生 成下一代群体,按此方法使群体逐代进化,直到满足进化终止条件。其实现方法如下∶
(1)根据具体问题确定可行解域,确定一种编码方法,能用数值串或字符串表示可行解域的每一解。 (2)对每一解应有一个度量好坏的依据,它用一函数表示,叫做适应度函数,一般由目标函数构成。 (3)确定进化参数群体规模M、交叉概率 Pc、变异概率Pm、进化终止条件。为便于计算,一般来说,每一代群体的个体数目都取相等。群体规模越大,越容易找到最优解,但由于受到计算机的运算能力的限制,群体规模越大,计算所需要的时间也相应地增加。进化终止条件指的是当进化到什么时候结束,它可以设定到某一代进化结束,也可以根据找出近似最优解是否满足精度要求来确定。
已知100个目标的经纬度信息如下(第一列为经度,第二例为纬度,以此类推):
经度 纬度 经度 纬度 经度 纬度 经度 纬度
53.7121 15.3046 51.1758 0.0322 46.3253 28.2753 30.3313 6.9348
56.5432 21.4188 10.8198 16.2529 22.7891 23.1045 10.1584 12.4819
20.1050 15.4562 1.9451 0.2057 26.4951 22.1221 31.4847 8.9640
26.2418 18.1760 44.0356 13.5401 28.9836 25.9879 38.4722 20.1731
28.2694 29.0011 32.1910 5.8699 36.4863 29.7284 0.9718 28.1477
8.9586 24.6635 16.5618 23.6143 10.5597 15.1178 50.2111 10.2944
8.1519 9.5325 22.1075 18.5569 0.1215 18.8726 48.2077 16.8889
31.9499 17.6309 0.7732 0.4656 47.4134 23.7783 41.8671 3.5667
43.5474 3.9061 53.3524 26.7256 30.8165 13.4595 27.7133 5.0706
23.9222 7.6306 51.9612 22.8511 12.7938 15.7307 4.9568 8.3669
21.5051 24.0909 15.2548 27.2111 6.2070 5.1442 49.2430 16.7044
17.1168 20.0354 34.1688 22.7571 9.4402 3.9200 11.5812 14.5677
52.1181 0.4088 9.5559 11.4219 24.4509 6.5634 26.7213 28.5667
37.5848 16.8474 35.6619 9.9333 24.4654 3.1644 0.7775 6.9576
14.4703 13.6368 19.8660 15.1224 3.1616 4.2428 18.5245 14.3598
58.6849 27.1485 39.5168 16.9371 56.5089 13.7090 52.5211 15.7957
38.4300 8.4648 51.8181 23.0159 8.9983 23.6440 50.1156 23.7816
13.7909 1.9510 34.0574 23.3960 23.0624 8.4319 19.9857 5.7902
40.8801 14.2978 58.8289 14.5229 18.6635 6.7436 52.8423 27.2880
39.9494 29.5114 47.5099 24.0664 10.1121 27.2662 28.7812 27.6659
8.0831 27.6705 9.1556 14.1304 53.7989 0.2199 33.6490 0.3980
1.3496 16.8359 49.9816 6.0828 19.3635 17.6622 36.9545 23.0265
15.7320 19.5697 11.5118 17.3884 44.0398 16.2635 39.7139 28.4203
6.9909 23.1804 38.3392 19.9950 24.6543 19.6057 36.9980 24.3992
4.1591 3.1853 40.1400 20.3030 23.9876 9.4030 41.1084 27.7149
我方有一个基地,经度和纬度为(70,40)。假设我方飞机的速度为1000km/h。我方派一架飞机从基地出发,侦察完所有目标,再返回原来的基地。在每一目标点的侦察时间不计,求该架飞机所花费的时间(假设我方飞机巡航时间可以充分长)。 这是一个旅行商问题。给我方基地编号为1,目标依次编号为2,,…,101,最后我方基地再重复编号为102(这样便于程序中计算)。距离矩阵 D = ( d i j ) 102 × 102 D=(d_{ij})_{102\times102} D=(dij)102×102,其中 d i j d_{ij} dij表示i,j两点的距离,i、j=1,2,…,102,这里 D D D为实对称矩阵。则问题是求一个从点1出发,走遍所有中间点,到达点102的一个最短路径。 上面问题中给定的是地理坐标(经度和纬度),必须求两点间的实际距离。设A,B两点的地理坐标分别为 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_{1},y_{1}),(x_{2},y_{2}) (x1,y1),(x2,y2),过A,B两点的大圆的劣弧长即为两点的实际距离。以地心为坐标原点 O O O,以赤道平面为 X O Y XOY XOY平面,以0度经线圈所在的平面为 X O Z XOZ XOZ平面建立三维直角坐标系。则A,B两点的直角坐标分别为:
A ( R c o s x 1 c o s y 1 , R s i n x 1 c o s y 1 , R s i n y 1 ) , A(Rcosx_{1}cosy_{1},Rsinx_{1}cosy_{1},Rsiny_{1}), A(Rcosx1cosy1,Rsinx1cosy1,Rsiny1), B ( R c o s x 2 c o s y 2 , R s i n x 2 c o s y 2 , R s i n y 2 ) , B(Rcosx_{2}cosy_{2},Rsinx_{2}cosy_{2},Rsiny_{2}), B(Rcosx2cosy2,Rsinx2cosy2,Rsiny2),
式中∶R=6370为地球半径。 A,B两点的实际距离: d = R a r c c o s ( O A ⋅ O B ∣ O A ∣ ⋅ ∣ O B ∣ ) , d=Rarccos(\frac{OA \cdot OB}{|OA| \cdot |OB|}), d=Rarccos(∣OA∣⋅∣OB∣OA⋅OB),
%遗传算法
clc,clear
sj0=load('sj.txt'); %加载100个目标的数据
x=sj0(:,1:2:8); x=x(:); %取经度
y=sj0(:,2:2:8); y=y(:); %取纬度
sj=[x y]; d1=[70,40]; %基地经纬度(70,40)
sj=[d1;sj;d1]; sj=sj*pi/180; %单位化成弧度
d=zeros(102); %距离矩阵d的初始值 100个目标+两次经过起点
for i=1:101 %计算相邻两点间距离,注意飞机飞行轨迹为弧
for j=i+1:102
d(i,j)=6370*acos(cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2)));
end
end
d=d+d'; %d为一个实对称矩阵,表示两点间的双向距离
w=50; g=100; %w为种群的个数,g为进化的代数
rand('state',sum(clock)); %初始化随机数发生器
for k=1:w %通过改良圈算法选取初始种群
c=randperm(100); %产生1,...,100的一个随机排列
c1=[1,c+1,102]; %生成初始解
for t=1:102 %该层循环是修改圈
flag=0; %修改圈退出标志
for m=1:100
for n=m+2:101
if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<d(c1(m),c1(m+1))+d(c1(n),c1(n+1))
c1(m+1:n)=c1(n:-1:m+1); flag=1; %修改圈
end
end
end
if flag==0
J(k,c1)=1:102; break %记录下较好的解并退出当前层循环
end
end
end
J(:,1)=0; J=J/102; %把整数序列转换成[0,1]区间上的实数,即转换成染色体编码
for k=1:g %该层循环进行遗传算法的操作
A=J; %交配产生子代B的初始染色体
c=randperm(w); %产生下面交叉操作的染色体对
for i=1:2:w
F=2+floor(100*rand(1)); %产生交叉操作的地址
temp=A(c(i),[F:102]); %中间变量的保存值
A(c(i),[F:102])=A(c(i+1),[F:102]); %交叉操作
A(c(i+1),F:102)=temp;
end
by=[]; %为了防止下面产生空地址,这里先初始化
while ~length(by)
by=find(rand(1,w)<0.1); %产生变异操作的地址
end
B=A(by,:); %产生变异操作的初始染色体
for j=1:length(by)
bw=sort(2+floor(100*rand(1,3))); %产生变异操作的3个地址
B(j,:)=B(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:102]); %交换位置
end
G=[J;A;B]; %父代和子代种群合在一起
[SG,ind1]=sort(G,2); %把染色体翻译成1,...,102的序列ind1
num=size(G,1); long=zeros(1,num); %路径长度的初始值
for j=1:num
for i=1:101
long(j)=long(j)+d(ind1(j,i),ind1(j,i+1)); %计算每条路径长度
end
end
[slong,ind2]=sort(long); %对路径长度按照从小到大排序
J=G(ind2(1:w),:); %精选前w个较短的路径对应的染色体
end
path=ind1(ind2(1),:), flong=slong(1) %解的路径及路径长度
xx=sj(path,1);yy=sj(path,2);
plot(xx,yy,'-V') %画出路径
path =
1 至 28 列
1 17 3 45 67 2 92 87 83 82 48 72 14 27 10 84 18 40 20 30 74 42 15 9 5 60 79 77
29 至 56 列
31 97 85 65 64 11 76 69 94 70 19 63 62 26 29 34 66 90 86 8 39 78 47 23 58 81 25 68
57 至 84 列
7 22 71 37 32 13 24 61 49 28 57 88 16 91 41 4 73 33 75 54 53 12 89 6 96 55 44 38
85 至 102 列
50 80 51 98 100 56 21 99 101 52 46 59 93 43 36 35 95 102
flong =
4.0096e+04
注:这是我用Markdown写的第一篇文章,之中难免有所纰漏,还望指出.
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/194255.html原文链接:https://javaforall.cn