前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习Caret--R处理不平衡数据

机器学习Caret--R处理不平衡数据

作者头像
Jamesjin63
发布2022-11-03 15:00:02
7290
发布2022-11-03 15:00:02
举报
文章被收录于专栏:EpiHubEpiHub

不平衡数据集指的是数据集各个类别的样本数目相差巨大,例如2000的人群中,某疾病的发生只有100 (5%)人,那么疾病发生与不发生为 1:19。这种情况下的数据称为不平衡数据。在真实世界中,不管是二分类或三分类,不平衡数据的现象普遍存在,尤其是罕见病领域。

image.png

如果训练集的90%的样本是属于同一个类别,而我们的模型将所有的样本都分类为该类,在这种情况下,该分类器是无效的,尽管最后的分类准确度为90%。 所以在数据不均衡时,准确度(Accuracy)这个评价指标参考意义就不大了。实际上,如果不均衡比例超过4:1,分类器模型就会偏向于占比大的类别。

不平衡数据集的主要处理方法

这里我们主要介绍目前常用的方法。

  • 对数据集进行重采样
  • 评价指标选用召回率

接下来,我们将进行案例展示,随机产生5000份样本数据,预测变量为2分类。分别介绍不同的采样方法及最后评价指标。评估各种方法的优劣

数据

代码语言:javascript
复制
library(caret) # for model-building
library(DMwR) # for smote implementation
library(purrr) # for functional programming (map)
library(pROC) # for AUC calculations

set.seed(2969)

imbal_train = twoClassSim(3000,
                           intercept = -25,
                           linearVars = 20,
                           noiseVars = 10)

imbal_test =  twoClassSim(2000,
                           intercept = -25,
                           linearVars = 20,
                           noiseVars = 10)

prop.table(table(imbal_train$Class))

head(imbal_train)

1.数据集进行重采样

接下来我们将使用相同的模型进行展示。下面的例子都使用随机森林模型。

1.1原始数据

首先我们不对Traning数据集进行任何的采样,使用10 x 5的重复交叉验证进行随机森林建模。然后在测试集中测量最终模型的性能。

代码语言:javascript
复制
# Set up control function for training
ctrl <- trainControl(method = "repeatedcv",
                     number = 10,
                     repeats = 5,
                     summaryFunction = twoClassSummary,
                     classProbs = TRUE)

# Build a standard classifier using a Random Forest
set.seed(42)
model_rf = train(Class ~ .,
                 data = imbal_train,
                 method = "rf",
                 metric = "ROC",
                 preProcess = c("scale", "center"),
                 trControl = ctrl)

## predict
confusionMatrix(predict(model_rf, imbal_test), imbal_test$Class)

1.2 Under-sampling

Caret包可以很容易地将采样技术与交叉验证重采样结合起来。我们可以通过缸盖trainControlsampling参数,并选择"down"-向下采样(也称为向下采样)。其余部分与上述模型设置相同。

代码语言:javascript
复制
ctrl <- trainControl(method = "repeatedcv", 
                     number = 10, 
                     repeats = 5, 
                     verboseIter = FALSE,
                     sampling = "down")



set.seed(42)
model_rf_under = train(Class ~ .,
                      data = imbal_train,
                      method = "rf",
                      preProcess = c("scale", "center"),
                      trControl = ctrl)

2.2 Oversampling

对于过度抽样(也称为向上抽样),我们只需更改sampling="up".

代码语言:javascript
复制
## Oversampling
ctrl <- trainControl(method = "repeatedcv", 
                     number = 10, 
                     repeats = 5, 
                     verboseIter = FALSE,
                     sampling = "up")

set.seed(42)
model_rf_over = train(Class ~ .,
                      data = imbal_train,
                      method = "rf",
                      preProcess = c("scale", "center"),
                      trControl = ctrl)

2.3 ROSE

除了过采样和欠采样,还有一些混合方法将欠采样与额外数据的生成结合起来。其中最受欢迎的两个是ROSE和SMOTE。

From Nicola Lunardon, Giovanna Menardi and Nicola Torelli’s “ROSE: A Package for Binary Imbalanced Learning” (R Journal, 2014, Vol. 6 Issue 1, p. 79): “The ROSE package provides functions to deal with binary classification problems in the presence of imbalanced classes. Artificial balanced samples are generated according to a smoothed bootstrap approach and allow for aiding both the phases of estimation and accuracy evaluation of a binary classifier in the presence of a rare class. Functions that implement more traditional remedies for the class imbalance and different metrics to evaluate accuracy are also provided. These are estimated by holdout, bootstrap, or cross-validation methods.”

代码语言:javascript
复制
ctrl <- trainControl(method = "repeatedcv", 
                     number = 10, 
                     repeats = 5, 
                     verboseIter = FALSE,
                     sampling = "rose")

set.seed(42)
model_rf_rose <- train(Class ~ .,
                       data = imbal_train,
                       method = "rf",
                       preProcess = c("scale", "center"),
                       trControl = ctrl)

2.4 SMOTE

我们只需更改sampling="smote".

From Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall and W. Philip Kegelmeyer’s “SMOTE: Synthetic Minority Over-sampling Technique” (Journal of Artificial Intelligence Research, 2002, Vol. 16, pp. 321–357): “This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples.”

代码语言:javascript
复制
## SMOTE
ctrl <- trainControl(method = "repeatedcv", 
                     number = 10, 
                     repeats = 5, 
                     verboseIter = FALSE,
                     sampling = "smote")

set.seed(42)
model_rf_smote <- train(Class ~ .,
                        data = imbal_train,
                        method = "rf",
                        preProcess = c("scale", "center"),
                        trControl = ctrl)

2.模型预测评价

在数据平衡的分类问题中,分类器好坏的评估指标常用准确率。数据不平衡的分类问题中,常用f1-score、ROC-AUC曲线见CSDN数据不平衡处理方法

image.png

2.1 ROC曲线

代码语言:javascript
复制
# Build custom AUC function to extract AUC
# from the caret model object

test_roc <- function(model, data) {
  
  roc(data$Class,
      predict(model, data, type = "prob")[, "Class2"])
  
}

model_list_roc <- models %>%
  map(test_roc, data = imbal_test)

model_list_roc %>%
  map(auc)
  
$original
Area under the curve: 0.9523

$under
Area under the curve: 0.9686

$over
Area under the curve: 0.9797

$smote
Area under the curve: 0.9752

$rose
Area under the curve: 0.9832
  
## plot

results_list_roc <- list(NA)
num_mod <- 1

for(the_roc in model_list_roc){
  
  results_list_roc[[num_mod]] <- 
    data_frame(tpr = the_roc$sensitivities,
               fpr = 1 - the_roc$specificities,
               model = names(models)[num_mod])
  
  num_mod <- num_mod + 1
  
}

results_df_roc <- bind_rows(results_list_roc)

# Plot ROC curve for all 5 models

ggplot(aes(x = fpr,  y = tpr, group = model), data = results_df_roc) +
  geom_line(aes(color = model), size = 1) +
  #scale_color_manual(values = custom_col) +
  geom_abline(intercept = 0, slope = 1, color = "gray", size = 1) +
  labs(
    x = "False Positive Rate (1-Specificity)", 
    y = "True Positive Rate (Sensitivity)")+
  theme_bw(base_size = 18)

通过上述结果可以看出,不采用重采样,AUC=0.9523;而rose采样方法的AUC最大,为0.983.但是AUC结果可能存在误差。

image.png

2.2 AUPRC曲线

在不平衡类的情况下使用AUC时也会产生误差,见 Issues with using ROC for imbalanced classes,谨慎选择AUC作为评价指标:对于数据极端不平衡时,可以观察观察不同算法在同一份数据下的训练结果的precision和recall,这样做有两个好处,一是可以了解不同算法对于数据的敏感程度,二是可以明确采取哪种评价指标更合适。针对机器学习中的数据不平衡问题,建议更多PR(Precision-Recall曲线),而非ROC曲线,如果采用ROC曲线来作为评价指标,很容易因为AUC值高而忽略实际对少两样本的效果其实并不理想的情况。Fawcett (2005).

Saito和Rehmsmeier(2015)建议在不平衡类别的情况下,检查准确率-召回率曲线,因为它比ROC曲线更能提供明确的信息。我们可以使用R中的PRROC包来计算5个模型的精确查全率曲线下的面积area under the precision-recall curve (AUPRC)

代码语言:javascript
复制
#####
## Issues with using ROC for imbalanced classes

calc_auprc <- function(model, data){
  
  index_class2 <- data$Class == "Class2"
  index_class1 <- data$Class == "Class1"
  
  predictions <- predict(model, data, type = "prob")
  
  pr.curve(predictions$Class2[index_class2],
           predictions$Class2[index_class1],
           curve = TRUE)
  
}

# Get results for all 5 models

model_list_pr <- models %>%
  map(calc_auprc, data = imbal_test)

model_list_pr %>%
  map(function(the_mod) the_mod$auc.integral)

$original
[1] 0.6493153

$under
[1] 0.4875021

$over
[1] 0.5818407

$smote
[1] 0.5053534

$rose
[1] 0.7213629

## plot

# Plot the AUPRC curve for all 5 models

results_list_pr <- list(NA)
num_mod <- 1

for(the_pr in model_list_pr){
  
  results_list_pr[[num_mod]] <- 
    data_frame(recall = the_pr$curve[, 1],
               precision = the_pr$curve[, 2],
               model = names(model_list_pr)[num_mod])
  
  num_mod <- num_mod + 1
  
}

results_df_pr <- bind_rows(results_list_pr)

ggplot(aes(x = recall, y = precision, group = model),
       data = results_df_pr) +
  geom_line(aes(color = model), size = 1) +
  geom_abline(intercept =
                sum(imbal_test$Class == "Class2")/nrow(imbal_test),
              slope = 0, color = "gray", size = 1) +
  theme_bw()

我们看到rose采样提供了最好的精度和召回性能,这取决于所选择的阈值,而不采样的模型所在阈值上的性能实际上也达到了0.649。

image.png

例如,rose采样分类器同时具有75%的查全率和50%的查准率,F1得分为0.6,而原分类器(original)的查全率为75%,查准率为25%,F1得分为0.38。换句话说,当两个分类器都能预测结局,如果使用同一个阈值来分类,他们都正确地识别出了75%实际上属于少数群体的情况。 然而,rose采样分类器在这些预测中的效率更高,因为预测为少数群体类的观察结果中有50%实际属于少数群体类,而对于原始分类器,预测为少数群体类的观察结果中只有25%实际属于少数群体类。

2.3 所有模型评价指标

我们已经可以看到不同的抽样技术是如何影响模型性能的。Precision描述的是真实的阳性结果,即来自良性样本的良性预测的比例。F1是precision和sensitivity/ recall的加权平均值。 更多详细细节,请见 caret documentation

  • 精度/特异性:有多少个选定的相关实例。
  • 调用/灵敏度:选择了多少个相关实例。
  • F1得分:精度和召回的谐波平均值。
  • MCC:观察和预测的二进制分类之间的相关系数。
  • AUC:正确率与误报率之间的关系。
代码语言:javascript
复制
## get parameters
comparison=tibble()
for (M in 1:length(models)) {
  model <- confusionMatrix(predict(models[[M]], imbal_test), imbal_test$Class)
  name=names(models)[M]
  xa= tibble(  modelname=name,
               Sensitivity = model$byClass["Sensitivity"],
               Specificity = model$byClass["Specificity"],
               Precision = model$byClass["Precision"],
               Recall = model$byClass["Recall"],
               F1 = model$byClass["F1"])
  print(name)
  comparison=xa %>% bind_rows(comparison)
}

## plot all
comparison %>%
  gather(x, y, Sensitivity:F1) %>%
  ggplot(aes(x = x, y = y, color = modelname)) +
  geom_jitter(width = 0.2, alpha = 0.5, size = 3)

image.png

在不平衡类的情况下,精确-召回曲线下的面积可以是一个有用的指标,帮助区分两个竞争的模型。对于AUC,加权和抽样技术可能只提供适度的改进。然而,这种改进通常会影响早期的检索性能,从而使模型的整体精度得到更大的提高。在尝试加权或抽样的同时,我们也建议在评估一个有不平衡类的分类器的性能时,不要只依赖AUC,因为它可能是一个误导性的指标。上面的代码显示了在有不平衡类的情况下,使用一个更敏感的分类性能指标(AUPRC)。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2022-06-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 不平衡数据集的主要处理方法
    • 数据
    • 1.数据集进行重采样
    • 1.1原始数据
    • 1.2 Under-sampling
    • 2.2 Oversampling
    • 2.3 ROSE
    • 2.4 SMOTE
    • 2.模型预测评价
    • 2.1 ROC曲线
    • 2.2 AUPRC曲线
    • 2.3 所有模型评价指标
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档