前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >中文对话大模型BELLE全面开源!

中文对话大模型BELLE全面开源!

作者头像
数据派THU
发布2023-04-05 15:40:11
7770
发布2023-04-05 15:40:11
举报
文章被收录于专栏:数据派THU
代码语言:javascript
复制
来源:高能AI本文约1000字,建议阅读5分钟模型调优仅使用由ChatGPT生成的数据,为中文指令提供更好的支持。

中文对话大模型开源社区迎来了一名浓眉大眼的新成员!最新项目BELLE(BE Large Language model Engine)基于BLOOM和LLAMA针对中文做了优化,模型调优仅使用由ChatGPT生成的数据,为中文指令提供更好的支持。

开源地址:https://github.com/LianjiaTech/BELLE

该项目目前已经开源了如下内容,并且在持续更新中:

  1. 150万中文指令微调数据集
  2. 以Bloomz-7b1-mt(70亿参数)为基础,分别在20万,60万,100万,200万数据上进行指令微调后得到的模型Checkpoint。
  3. 以LLAMA-7b(70亿参数)为基础,分别在60万,200万数据上进行指令微调后得到的模型Checkpoint。
  4. 对以上模型进行量化后的轻量化模型,便于部署、推理。

BELLE模型能力展示

BELLE技术方案介绍

ChatGPT、GPT-4的横空出世,让人们看到了一丝AGI(通用人工智能)的曙光。在可预见的将来,ChatGPT将对各行各业带来革命性的影响。但是这样的技术不应该只被掌握在一家公司手中,因此BELLE项目应运而生了,他们的初衷是为了促进中文对话大模型开源社区的发展。为此,他们在三个方面做了初步的尝试,并已经开源了他们的研究成果。

  1. 数据:为了获得大量的指令微调数据,项目团队参考了斯坦福大学的Alpaca项目,并针对中文场景进行了优化,利用ChatGPT生了多样化、高质量的数据,这些数据涵盖了各种应用场景,包括日常对话、知识问答、文本生成等,有助于模型在各种中文场景中的表现。他们已经开源其中的150万数据。
  2. 模型:大模型的训练往往具有较高的成本,而一个具备初步的能力的对话模型,将大大降低使用和科研的门槛。为此,他们基于Bloom和LLAMA,训练了出具效果的对话模型,并完全开放了这些模型的参数。
  3. 轻量化:为了便于模型的部署和试用,BELLE团队同时开源了对话模型的量化版本。包括8bit, 4bit, 其中4bit版本模型checkpoint大小仅为6.9G,运行仅需8.4G显存。

模型效果比较

以Bloomz-7b1-mt为基础,BELLE团队评估了不同数量的instruction tuning数据,对模型效果的影响。总的来说,提升数据量能持续带来效果的提升,但是在不同类型的任务上表现有所不同。在Extract, Classification, Closed QA, 和Summarization任务上,增加数据能持续带来效果的提升,还未达到瓶颈。在Translation, Rewrite, 和Brainstorming任务上,几十万的数据量就能获得较好的效果。在Math, Code, 和COT任务上,模型效果较差,而且增加数据量已经无法带来效果的提升。

详见论文:Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases。

总结

可以说BELLE的出现,大大促进了中文开源对话模型的发展,基于他们开源的数据和模型,更多的人可以尝试这些模型,更多的研究工作可以更快捷的展开。令人更加惊喜的是,该开源项目仍在持续更新,将来会有更多的内容被开放出来,欢迎大家持续的跟踪。

编辑:文婧

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-04-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据派THU 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • BELLE模型能力展示
  • BELLE技术方案介绍
  • 模型效果比较
  • 总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档