前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >LRU缓存

LRU缓存

作者头像
狼啸风云
发布于 2023-11-18 07:46:18
发布于 2023-11-18 07:46:18
20300
代码可运行
举报
运行总次数:0
代码可运行

请你设计并实现一个满足  LRU (最近最少使用) 缓存 约束的数据结构

实现 LRUCache 类:

  • LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4

LRU 算法就是一种缓存淘汰策略,原理不难,但是面试中写出没有 bug 的算法比较有技巧,需要对数据结构进行层层抽象和拆解,本文就带你写一手漂亮的代码。

计算机的缓存容量有限,如果缓存满了就要删除一些内容,给新内容腾位置。但问题是,删除哪些内容呢?我们肯定希望删掉哪些没什么用的缓存,而把有用的数据继续留在缓存里,方便之后继续使用。那么,什么样的数据,我们判定为「有用的」的数据呢?

LRU 缓存淘汰算法就是一种常用策略。LRU 的全称是 Least Recently Used,也就是说我们认为最近使用过的数据应该是是「有用的」,很久都没用过的数据应该是无用的,内存满了就优先删那些很久没用过的数据。

举个简单的例子,安卓手机都可以把软件放到后台运行,比如我先后打开了「设置」「手机管家」「日历」,那么现在他们在后台排列的顺序是这样的:

{:align=center}

但是这时候如果我访问了一下「设置」界面,那么「设置」就会被提前到第一个,变成这样:

{:align=center}

假设我的手机只允许我同时开 3 个应用程序,现在已经满了。那么如果我新开了一个应用「时钟」,就必须关闭一个应用为「时钟」腾出一个位置,关那个呢?

按照 LRU 的策略,就关最底下的「手机管家」,因为那是最久未使用的,然后把新开的应用放到最上面:

{:align=center}

现在你应该理解 LRU(Least Recently Used)策略了。当然还有其他缓存淘汰策略,比如不要按访问的时序来淘汰,而是按访问频率(LFU 策略)来淘汰等等,各有应用场景。本文讲解 LRU 算法策略。

一、LRU 算法描述 力扣第 146 题「LRU缓存机制」就是让你设计数据结构:

首先要接收一个 capacity 参数作为缓存的最大容量,然后实现两个 API,一个是 put(key, val) 方法存入键值对,另一个是 get(key) 方法获取 key 对应的 val,如果 key 不存在则返回 -1。

注意哦,get 和 put 方法必须都是 O(1) 的时间复杂度,我们举个具体例子来看看 LRU 算法怎么工作。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
/* 缓存容量为 2 */
LRUCache cache = new LRUCache(2);
// 你可以把 cache 理解成一个队列
// 假设左边是队头,右边是队尾
// 最近使用的排在队头,久未使用的排在队尾
// 圆括号表示键值对 (key, val)

cache.put(1, 1);
// cache = [(1, 1)]

cache.put(2, 2);
// cache = [(2, 2), (1, 1)]

cache.get(1);       // 返回 1
// cache = [(1, 1), (2, 2)]
// 解释:因为最近访问了键 1,所以提前至队头
// 返回键 1 对应的值 1

cache.put(3, 3);
// cache = [(3, 3), (1, 1)]
// 解释:缓存容量已满,需要删除内容空出位置
// 优先删除久未使用的数据,也就是队尾的数据
// 然后把新的数据插入队头

cache.get(2);       // 返回 -1 (未找到)
// cache = [(3, 3), (1, 1)]
// 解释:cache 中不存在键为 2 的数据

cache.put(1, 4);    
// cache = [(1, 4), (3, 3)]
// 解释:键 1 已存在,把原始值 1 覆盖为 4
// 不要忘了也要将键值对提前到队头

二、LRU 算法设计 分析上面的操作过程,要让 put 和 get 方法的时间复杂度为 O(1),我们可以总结出 cache 这个数据结构必要的条件:

1、显然 cache 中的元素必须有时序,以区分最近使用的和久未使用的数据,当容量满了之后要删除最久未使用的那个元素腾位置。

2、我们要在 cache 中快速找某个 key 是否已存在并得到对应的 val;

3、每次访问 cache 中的某个 key,需要将这个元素变为最近使用的,也就是说 cache 要支持在任意位置快速插入和删除元素。

那么,什么数据结构同时符合上述条件呢?哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表 LinkedHashMap。

LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。这个数据结构长这样:

借助这个结构,我们来逐一分析上面的 3 个条件:

1、如果我们每次默认从链表尾部添加元素,那么显然越靠尾部的元素就是最近使用的,越靠头部的元素就是最久未使用的。

2、对于某一个 key,我们可以通过哈希表快速定位到链表中的节点,从而取得对应 val。

3、链表显然是支持在任意位置快速插入和删除的,改改指针就行。只不过传统的链表无法按照索引快速访问某一个位置的元素,而这里借助哈希表,可以通过 key 快速映射到任意一个链表节点,然后进行插入和删除。

也许读者会问,为什么要是双向链表,单链表行不行?另外,既然哈希表中已经存了 key,为什么链表中还要存 key 和 val 呢,只存 val 不就行了?

想的时候都是问题,只有做的时候才有答案。这样设计的原因,必须等我们亲自实现 LRU 算法之后才能理解,所以我们开始看代码吧~

三、代码实现 很多编程语言都有内置的哈希链表或者类似 LRU 功能的库函数,但是为了帮大家理解算法的细节,我们先自己造轮子实现一遍 LRU 算法,然后再使用 Java 内置的 LinkedHashMap 来实现一遍。

首先,我们把双链表的节点类写出来,为了简化,key 和 val 都认为是 int 类型:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
class Node {
    public int key, val;
    public Node next, prev;
    public Node(int k, int v) {
        this.key = k;
        this.val = v;
    }
}

然后依靠我们的 Node 类型构建一个双链表,实现几个 LRU 算法必须的 API:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
class DoubleList {  
    // 头尾虚节点
    private Node head, tail;  
    // 链表元素数
    private int size;
    
    public DoubleList() {
        // 初始化双向链表的数据
        head = new Node(0, 0);
        tail = new Node(0, 0);
        head.next = tail;
        tail.prev = head;
        size = 0;
    }

    // 在链表尾部添加节点 x,时间 O(1)
    public void addLast(Node x) {
        x.prev = tail.prev;
        x.next = tail;
        tail.prev.next = x;
        tail.prev = x;
        size++;
    }

    // 删除链表中的 x 节点(x 一定存在)
    // 由于是双链表且给的是目标 Node 节点,时间 O(1)
    public void remove(Node x) {
        x.prev.next = x.next;
        x.next.prev = x.prev;
        size--;
    }
    
    // 删除链表中第一个节点,并返回该节点,时间 O(1)
    public Node removeFirst() {
        if (head.next == tail)
            return null;
        Node first = head.next;
        remove(first);
        return first;
    }

    // 返回链表长度,时间 O(1)
    public int size() { return size; }

}

到这里就能回答刚才「为什么必须要用双向链表」的问题了,因为我们需要删除操作。删除一个节点不光要得到该节点本身的指针,也需要操作其前驱节点的指针,而双向链表才能支持直接查找前驱,保证操作的时间复杂度 O(1)。

注意我们实现的双链表 API 只能从尾部插入,也就是说靠尾部的数据是最近使用的,靠头部的数据是最久为使用的。

有了双向链表的实现,我们只需要在 LRU 算法中把它和哈希表结合起来即可,先搭出代码框架:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
class LRUCache {
    // key -> Node(key, val)
    private HashMap<Integer, Node> map;
    // Node(k1, v1) <-> Node(k2, v2)...
    private DoubleList cache;
    // 最大容量
    private int cap;
    
    public LRUCache(int capacity) {
        this.cap = capacity;
        map = new HashMap<>();
        cache = new DoubleList();
    }

先不慌去实现 LRU 算法的 get 和 put 方法。由于我们要同时维护一个双链表 cache 和一个哈希表 map,很容易漏掉一些操作,比如说删除某个 key 时,在 cache 中删除了对应的 Node,但是却忘记在 map 中删除 key。

解决这种问题的有效方法是:在这两种数据结构之上提供一层抽象 API。

说的有点玄幻,实际上很简单,就是尽量让 LRU 的主方法 get 和 put 避免直接操作 map 和 cache 的细节。我们可以先实现下面几个函数:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
/* 将某个 key 提升为最近使用的 */
private void makeRecently(int key) {
    Node x = map.get(key);
    // 先从链表中删除这个节点
    cache.remove(x);
    // 重新插到队尾
    cache.addLast(x);
}

/* 添加最近使用的元素 */
private void addRecently(int key, int val) {
    Node x = new Node(key, val);
    // 链表尾部就是最近使用的元素
    cache.addLast(x);
    // 别忘了在 map 中添加 key 的映射
    map.put(key, x);
}

/* 删除某一个 key */
private void deleteKey(int key) {
    Node x = map.get(key);
    // 从链表中删除
    cache.remove(x);
    // 从 map 中删除
    map.remove(key);
}

/* 删除最久未使用的元素 */
private void removeLeastRecently() {
    // 链表头部的第一个元素就是最久未使用的
    Node deletedNode = cache.removeFirst();
    // 同时别忘了从 map 中删除它的 key
    int deletedKey = deletedNode.key;
    map.remove(deletedKey);
}

这里就能回答之前的问答题「为什么要在链表中同时存储 key 和 val,而不是只存储 val」,注意 removeLeastRecently 函数中,我们需要用 deletedNode 得到 deletedKey。

也就是说,当缓存容量已满,我们不仅仅要删除最后一个 Node 节点,还要把 map 中映射到该节点的 key 同时删除,而这个 key 只能由 Node 得到。如果 Node 结构中只存储 val,那么我们就无法得知 key 是什么,就无法删除 map 中的键,造成错误。

上述方法就是简单的操作封装,调用这些函数可以避免直接操作 cache 链表和 map 哈希表,下面我先来实现 LRU 算法的 get 方法:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public int get(int key) {
    if (!map.containsKey(key)) {
        return -1;
    }
    // 将该数据提升为最近使用的
    makeRecently(key);
    return map.get(key).val;
}

put 方法稍微复杂一些,我们先来画个图搞清楚它的逻辑:

这样我们可以轻松写出 put 方法的代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public void put(int key, int val) {
    if (map.containsKey(key)) {
        // 删除旧的数据
        deleteKey(key);
        // 新插入的数据为最近使用的数据
        addRecently(key, val);
        return;
    }
    
    if (cap == cache.size()) {
        // 删除最久未使用的元素
        removeLeastRecently();
    }
    // 添加为最近使用的元素
    addRecently(key, val);
}

至此,你应该已经完全掌握 LRU 算法的原理和实现了,我们最后用 Java 的内置类型 LinkedHashMap 来实现 LRU 算法,逻辑和之前完全一致,我就不过多解释了:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
class LRUCache {
public:
    LRUCache(int capacity) : cap(capacity) {
    }

    int get(int key) {
        if (map.find(key) == map.end()) return -1;
        auto key_value = *map[key];
        cache.erase(map[key]);
        cache.push_front(key_value);
        map[key] = cache.begin();
        return key_value.second;
    }

    void put(int key, int value) {
        if (map.find(key) == map.end()) {
            if (cache.size() == cap) {
                map.erase(cache.back().first);
                cache.pop_back();
            }
        }
        else {
            cache.erase(map[key]);
        }
        cache.push_front({key, value});
        map[key] = cache.begin();
    }
private:
    int cap;
    list<pair<int, int>> cache;
    unordered_map<int, list<pair<int, int>>::iterator> map;
};
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-11-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
LRU算法简介
LRU(Least Recently Used)算法是一种缓存淘汰算法,常用于缓存系统中,通过保留最近使用的数据而淘汰最久未使用的数据,以提高缓存的命中率。LRU算法的核心思想是基于时间局部性原理:最近访问的数据在未来会被再次访问。
孟斯特
2024/01/28
6330
LRU算法简介
网络拾遗之Http缓存
大家好,我是柒八九。在前天(周六)利用一天的时间,看了关于前端工程化的相关书籍和知识点,里面涉及到很多关于工程化的细节点和设计细节。但是其中有一点,说到关于「客户端缓存」
前端柒八九
2022/08/25
2590
网络拾遗之Http缓存
LeetCode 146. LRU缓存机制(哈希链表)
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。
Michael阿明
2021/02/20
5170
LeetCode 146. LRU缓存机制(哈希链表)
【设计数据结构】实现一个 LRUCache
这是 LeetCode 上的 「146. LRU 缓存机制」 ,难度为 「中等」。
宫水三叶的刷题日记
2021/06/23
6850
淘汰算法-LRU
LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
用户9778128
2022/05/26
6310
146. LRU缓存机制 Krains 2020-08-05 12:50:28 链表
要想在O(1)时间内get到已存的值,可以使用哈希表,而哈希表存储键值是没有先后顺序的,因此就不能够在O(1)的时间内删除最久未使用的元素,可以采用双向链表,链表的优点是插入删除元素快,而且维护键值的先后顺序,我们结合哈希表和双向链表的优势,用哈希表结合双向链表方式实现LRU。
Krains
2020/08/06
3180
昨天面试被问到的 缓存淘汰算法FIFO、LRU、LFU及Java实现
第一次请求时把计算好的结果存放在缓存中,下次遇到同样的请求时,把之前保存在缓存中的数据直接拿来使用。
万猫学社
2022/04/22
3300
一次倒在LRU上的经历
最近有个小伙伴跟我诉苦,说他没面到LRU,他说他很久前知道有被问过LRU的但是心想自己应该不会遇到,所以暂时就没准备。
bigsai
2021/12/08
5440
一次倒在LRU上的经历
【LeetCode】146. LRU 缓存机制
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。 实现 LRUCache 类:
韩旭051
2021/01/07
4510
算法题就像搭乐高:手把手带你拆解 LRU 算法
LRU 算法就是一种缓存淘汰策略,原理不难,但是面试中写出没有 bug 的算法比较有技巧,需要对数据结构进行层层抽象和拆解,本文 labuladong 就给你写一手漂亮的代码。
labuladong
2021/09/23
5510
146. LRU 缓存机制
要在O(1)时间复杂度完成这两种操作,我们想到的使用HashMap来进行操作,而且参考LRUCache的特性,需要对元素进行移动或者删除,首选的是双向链表。
用户7447819
2021/07/23
2890
146. LRU 缓存机制
什么是LRU? 很多时候尤其以前内存比较值钱的时候,我们空间比较宝贵,不会很大,那么就存在了重点数据和非重点数据,我们要在内存不够的时候有限保存重点数据淘汰非重点数据;LRU也就是说我们认为最近使用过的数据应该是重点数据,很久都没用过的数据应该是非重点数据,内存满了就优先删那些很久没用过的数据。 有哪些应用场景呢? 1.手机上划显示的任务列表,都是按照最近打开顺序排列的 2.redis的lru淘汰策略 思路: 1.利用linkedhashmap实现lru,因为其本身就存在lru策略,只需要
名字是乱打的
2021/12/23
2310
146. LRU 缓存机制
实现 LRU 缓存算法
LRU 算法全称是最近最少使用算法(Least Recently Use),是一种简单的缓存策略。顾名思义,LRU 算法会选出最近最少使用的数据进行淘汰。
Se7en258
2022/06/24
9870
实现 LRU 缓存算法
十道腾讯算法真题解析!
大家好,我是捡田螺的小男孩。收集了腾讯常考的十道算法题(真题)。在金三银四,希望对大家有帮助呀。
捡田螺的小男孩
2022/04/06
8820
十道腾讯算法真题解析!
146. LRU 缓存机制
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。 实现 LRUCache 类: LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存 int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。 void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之
CaesarChang张旭
2021/06/29
2250
经典算法之链表篇(三)
ma布
2024/10/21
950
经典算法之链表篇(三)
图解LeetCode——146. LRU 缓存
那么针对第一个问题,我们可以采用哈希表或者数组的方式进行数据存储,因为本题的提示部分已经指出key值是在[0, 10000]区间内的,并不存在负数,所以为了提升执行速度,我们选择数组作为底层的存储结构。其中,需要注意的是,存储的value是下面要介绍的双向链表中的Node节点。
爪哇缪斯
2023/05/31
2940
图解LeetCode——146. LRU 缓存
Redies 淘汰策略的 LRU 算法你知道吗?
最近有个小伙伴跟我诉苦,说他面试的时候被问到Redis的淘汰策略,这个问题他是有准备的
阿凯
2022/01/07
4790
Redies 淘汰策略的 LRU 算法你知道吗?
实现LRU算法
计算机的缓存容量有限,如果缓存满了就要删除一些内容给新的内容腾出位置,而删除哪些内容,就有不同的策略,LRU算法是其中一种策略。
Defu Li
2020/09/08
8560
实现一个LRU真的好难呐
不知道屏幕前的朋友们,有没有和我一样,觉得LRU算法原理很容易理解,实现起来却很复杂。
虎妞先生
2023/05/01
5740
相关推荐
LRU算法简介
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验