前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >长短期记忆(LSTM):突破性的序列训练技术

长短期记忆(LSTM):突破性的序列训练技术

作者头像
科学冷冻工厂
发布2023-11-20 13:02:23
3050
发布2023-11-20 13:02:23
举报

长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

Why

LSTM提出的动机是为了解决「长期依赖问题」

长期依赖(Long Term Dependencies)

在深度学习领域中(尤其是RNN),“长期依赖“问题是普遍存在的。长期依赖产生的原因是当神经网络的节点经过许多阶段的计算后,之前比较长的时间片的特征已经被覆盖,例如下面例子

代码语言:javascript
复制
eg1: The cat, which already ate a bunch of food, was full.
      |   |     |      |     |  |   |   |   |     |   |
     t0  t1    t2      t3    t4 t5  t6  t7  t8    t9 t10
eg2: The cats, which already ate a bunch of food, were full.
      |   |      |      |     |  |   |   |   |     |    |
     t0  t1     t2     t3    t4 t5  t6  t7  t8    t9   t10

我们想预测'full'之前系动词的单复数情况,显然full是取决于第二个单词’cat‘的单复数情况,而非其前面的单词food。根据RNN的结构,随着数据时间片的增加,RNN丧失了学习连接如此远的信息的能力。

LSTM vs. RNN

相比RNN只有一个传递状态

h^t

,LSTM有两个传输状态,一个

c^t

(cell state),和一个

h^t

(hidden state)。(Tips:RNN中的

h^t

对于LSTM中的

c^t

其中对于传递下去的

c^t

改变得很慢,通常输出的

c^t

是上一个状态传过来的

c^{t-1}

加上一些数值。

h^t

则在不同节点下往往会有很大的区别。

Model 详解

状态计算

首先使用LSTM的当前输入

x^t

和上一个状态传递下来的

h^{t-1}

拼接训练得到四个状态。

其中,

z^f

z^i

z^o

是由拼接向量乘以权重矩阵之后,再通过一个

sigmoid

激活函数转换成0到1之间的数值,来作为一种门控状态。而

z

则是将结果通过一个

tanh

激活函数将转换成-1到1之间的值(这里使用

tanh

是因为这里是将其做为输入数据,而不是门控信号)。

计算过程

⊙ 是Hadamard Product,也就是操作矩阵中对应的元素相乘,因此要求两个相乘矩阵是同型的。 ⊕ 则代表进行矩阵加法。

LSTM内部主要有三个阶段:

  1. 「忘记阶段」。这个阶段主要是对上一个节点传进来的输入进行「选择性」忘记。简单来说就是会 “忘记不重要的,记住重要的”。

具体来说是通过计算得到的

z^f

(f表示forget)来作为忘记门控,来控制上一个状态的

c^{t-1}

哪些需要留哪些需要忘。

  1. 「选择记忆阶段」。这个阶段将这个阶段的输入有选择性地进行“记忆”。主要是会对输入
x^t

进行选择记忆。哪些重要则着重记录下来,哪些不重要,则少记一些。当前的输入内容由前面计算得到的

z

表示。而选择的门控信号则是由

z^i

(i代表information)来进行控制。

❝将上面两步得到的结果相加,即可得到传输给下一个状态的

c^t

。也就是上图中的第一个公式。 ❞

  1. 「输出阶段」。这个阶段将决定哪些将会被当成当前状态的输出。主要是通过
z^o

来进行控制的。并且还对上一阶段得到的

c^o

进行了放缩(通过一个tanh激活函数进行变化)。

与普通RNN类似,输出

y^t

往往最终也是通过

h^t

变化得到。

Code

现在,我们从零开始实现长短期记忆网络。 与 8.5节中的实验相同, 我们首先加载时光机器数据集。

代码语言:javascript
复制
import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
  • 初始化模型参数

定义和初始化模型参数。 如前所述,超参数num_hiddens定义隐藏单元的数量。 我们按照标准差0.01的高斯分布初始化权重,并将偏置项设为0。

代码语言:javascript
复制
def get_lstm_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xi, W_hi, b_i = three()  # 输入门参数
    W_xf, W_hf, b_f = three()  # 遗忘门参数
    W_xo, W_ho, b_o = three()  # 输出门参数
    W_xc, W_hc, b_c = three()  # 候选记忆元参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
              b_c, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params
  • 定义模型
代码语言:javascript
复制
def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device),
            torch.zeros((batch_size, num_hiddens), device=device))

def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
     W_hq, b_q] = params
    (H, C) = state
    outputs = []
    for X in inputs:
        I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
        F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
        O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
        C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
        C = F * C + I * C_tilda
        H = O * torch.tanh(C)
        Y = (H @ W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H, C)
  • 训练和预测
代码语言:javascript
复制
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,
                            init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

# perplexity 1.3, 17736.0 tokens/sec on cuda:0
# time traveller for so it will leong go it we melenot ir cove i s
# traveller care be can so i ngrecpely as along the time dime

总结

  • 长短期记忆网络有三种类型的门:输入门、遗忘门和输出门。
  • 长短期记忆网络的隐藏层输出包括“隐状态”和“记忆元”。只有隐状态会传递到输出层,而记忆元完全属于内部信息。
  • 长短期记忆网络可以缓解梯度消失和梯度爆炸。

Ref

  1. https://zhuanlan.zhihu.com/p/32085405
  2. https://zhuanlan.zhihu.com/p/42717426
  3. https://zh.d2l.ai/chapter_recurrent-modern/lstm.html
本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2023-11-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 冷冻工厂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Why
    • 长期依赖(Long Term Dependencies)
    • LSTM vs. RNN
    • Model 详解
      • 状态计算
        • 计算过程
        • Code
        • 总结
        • Ref
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档