前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >AI 立大功!神经网络对太阳图像进行三维重建,首次揭示太阳极点

AI 立大功!神经网络对太阳图像进行三维重建,首次揭示太阳极点

作者头像
HyperAI超神经
发布2024-01-04 13:50:51
1330
发布2024-01-04 13:50:51
举报
文章被收录于专栏:HyperAI超神经HyperAI超神经

作者:加零

编辑:李宝珠、三羊

科罗拉多州国家大气研究中心 (NCAR) 的研究人员利用 NeRFs 神经网络,将太阳的二维图像转换成三维重建图像,首次揭示了太阳的两极。

极紫外辐射 (EUV, Extreme Ultraviolet) 是指波长在 10~120 nm 范围的太阳辐射,EUV 在影响近地轨道卫星大气阻力的同时,也会为人类健康带来威胁,过度暴露于 EUV 辐射会导致视力下降、皮肤晒伤甚至引发皮肤癌等严重疾病。

预测 EUV 离不开完整的太阳图像,然而,目前的 EUV 成像卫星只能围绕太阳赤道(黄道,ecliptic)成像,并不能直接观测到一些非黄道 (non-ecliptic viewpoints) 部分。加上大气层的影响,二维图形无法得到精确的位置映射,有限时间内处理大量图像处理也困难重重,这些阻碍都使得重建太阳的三维几何结构颇具挑战。

为了解决这一难题,科罗拉多州国家大气研究中心 (NCAR) 的太阳物理学家 Benoit Tremblay 及其同事利用 NeRFs 神经网络,将太阳的二维图像转换成三维重建图像,首次揭示了太阳的两极。对于非黄道观测点,模型的峰值信噪比为 43.3 dB,平均绝对相对误差为 0.3%,提供了一致的太阳三维重建图像。

人工智能重建了太阳的一个极区

这个区域在现实生活中从未被观察到过

论文地址: https://arxiv.org/abs/2211.14879 关注公众号,回复「太阳图像」即可下载全文

实验过程:太阳三维重建

数据集:太阳前向模型图像

研究人员采用预测科学公司 (PSI, Predictive Science Inc) 对太阳日冕的磁流体动力学 (MHD, magneto hydrodynamic) 模拟,估计太阳大气中等离子体参数和磁场的全球三维分布。选取 256 张从均匀间隔的观测点拍摄的 193 年太阳的前向模型图像,其中黄道上的 32 个观测点作为训练集,黄道以外纬度的观测点作为测试集。

训练用的太阳图像

a:2019-07-02 20:41:08 (UT) 从黄道上拍摄的 193Å 太阳的卫星图像; b:从太阳的三维模型提取的卫星视点的模拟图像; c:从 3d 模型中提取的 256 个观测点的位置,颜色编码表示哪些视点被用于训练集(粉色)和测试集(绿色)。

算法结构:SuNeRF 模型

目的: 通过一组训练图像重建太阳的三维几何形状。

方法: 利用设计为模拟体积的神经网络将每个坐标点 (x,y,z) 映射到发射和吸收系数 (ε,κ)。

功能:对于每个像素,从总体中采样光线。

辐射转移原理: 基于辐射转移原理的总强度计算。

SuNeRF 模型架构

训练过程:二维图像的三维重建

对 NeRFs 神经网络进行修改,构造 SuNeRFs 神经网络进行算法训练。

修改 NeRF 模型:调整 NeRFs 模型以适应太阳的物理实际,用发射和吸收系数取代 NeRF 模型对密度和颜色的预测。

发射和吸收计算:对于每个像素,通过沿射线路径采样点来计算总发射。在每个点 (x, y, z) 预测发射和吸收系数 (ϵ, κ),将 κ 乘以采样射线距离 (ds) 计算发射 (I),将吸收 (A) 定义为 exp(κ * ds),在每个点上在 0 和 1 之间进行缩放。

计算总观测强度:对所有采样点进行积分,考虑从原点到观察者的射线路径上的吸收,使用积分强度值计算总观测强度 (I_total)。

像素值优化:应用 asinh 拉伸来优化训练的值范围。

适应太阳几何结构的 NeRF 射线采样:从距离太阳 [-1.3, 1.3] 太阳半径范围内采样射线。

AI 将太阳的二维卫星图像(左)转换成三维重建图像(中)

并推算出从未见过的太阳极地区(右)的过程

使用约 30 个 epochs,批处理大小 (batchsize) 为 8096 射线,在 NVIDIA A100 GPU 上训练了约 19 小时。采用了 Rumelhart 等人于 1986 年提出的反向传播算法,使用了自适应矩估计(Adam)优化器(Kingma 和 Ba,2015),学习率 lr = 5 × 10^-4,并以均方误差(MSE)作为损失函数。

实验结果:高准确度三维重建

通过对五个具有不同初始化的 SuNeRFs 进行集成拟合,并计算输出的标准偏差来估计模型的不确定性。

质量评估:图 (a) 展示了模拟中每个视点的峰值信噪比 (PSNR) 和结构相似性 (SSIM)。SuNeRFs 提供了高质量的结果,最小 SSIM 为 0.97。接近黄道面的点显示最小误差,而随着纬度增加,误差逐渐增加,符合训练-测试拆分的预期。

模型比较:图 (b) 将模型与基线方法进行了比较。在较高纬度,简单的重投影显示出伪影和与真实情况较大的偏差,而 SuNeRF 模型呈现几乎相同的图像。差异图显示主要错误发生在太阳边缘附近和边缘区域,这也反映在不确定性图中。需要注意的是,重投影方法无法处理边缘区域。

对 SuNeRF 进行评估

a) 在 256 个视点评估的 PSNR 和 SSIM,由相应纬度和经度的点表示。颜色表示重建的质量,较大的数值表示与地面事实更好的一致性。± 7 纬度的红色虚线标志着训练和测试观点之间的分离; (b) 在不同纬度对基线方法(球面重投影;第一行)、模拟数据(地面真实度;第二行)和 SuNeRF 重建(第三行)进行定性比较。差异图(第四行)确定了我们的方法偏离地面真理的区域。不确定性估计(第五行)与误差一致。

下表总结了在整个测试集上的定量评估结果,SuNeRF 模型在很大程度上优于基线方法,并且没有出现过度或低估的迹象,对太阳的三维重建准确度高。

夸父:中国人的「追日」梦想

太阳,是与我们关系最密切的一颗恒星,也是唯一一颗可以详细研究的恒星。它为我们带来了光明和温暖,同时也对地球产生了重大影响。所以,人们多年来从未停止探寻太阳的奥秘,「追风逐日」也一直是中国科研人员的梦想。

2021 年发射的羲和号可以称为我国探日工程的探路者,而夸父一号 (ASO-S) 则是观察太阳的多面手,它可以从紫外线、可见光和 X 射线波段等对太阳进行观测。我国发射的两颗探日卫星各有侧重,将共同提升我国在世界太阳物理研究领域的影响力,成为我国科学家「追日」的最强搭档。

作为我国综合性太阳探测专用卫星,夸父一号实现了 3 个首次:

  1. 首次以「一磁两暴」作为科学目标并配置相应的载荷组合
  2. 首次在一颗卫星平台上对全日面矢量磁场、太阳耀斑非热辐射成像、日冕物质抛射的日面形成以及日冕传播同时进行观测
  3. 首次在莱曼阿尔法波段实现全日面和日冕同时观测

如果说日趋成熟的 AI 技术是一张拉满蓄力的弓,人类丰富的求知欲就是一只箭,飞向神秘的深空。

参考资料:

https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_170.pdf

https://www.cas.cn/cm/202103/t20210316_4781101.shtml

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2024-01-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 HyperAI超神经 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 实验过程:太阳三维重建
    • 数据集:太阳前向模型图像
      • 算法结构:SuNeRF 模型
      • 实验结果:高准确度三维重建
      • 夸父:中国人的「追日」梦想
      相关产品与服务
      腾讯云服务器利旧
      云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档