前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Pytorch实现线性回归模型

Pytorch实现线性回归模型

作者头像
@小森
发布2024-04-25 18:58:22
910
发布2024-04-25 18:58:22
举报
文章被收录于专栏:xiaosenxiaosen

在机器学习和深度学习的世界中,线性回归模型是一种基础且广泛使用的算法,简单易于理解,但功能强大,可以作为更复杂模型的基础。使用PyTorch实现线性回归模型不仅可以帮助初学者理解模型的基本概念,还可以为进一步探索更复杂的模型打下坚实的基础。⚔️

💡在接下来的教程中,我们将详细讨论如何使用PyTorch来实现线性回归模型,包括代码实现、参数调整以及模型优化等方面的内容~

💡我们接下来使用Pytorch的API来手动构建一个线性回归的假设函数损失函数及优化方法,熟悉一下训练模型的流程。熟悉流程之后我们再学习如何使用PyTorch的API来自动训练模型~

代码语言:javascript
复制
import torch
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
import random
def creat_data():
    x, y, coef = make_regression(n_samples=100, n_features=1, noise=10, coef=True, bias=14.5, random_state=0)
    # 所有的特征值X都是0,目标变量y的平均值也会是14.5(加上或减去由于noise参数引入的噪声)
    # coef:权重系数,表示线性回归模型中每个特征的权重,y_pred = x * coef + bias
    x = torch.tensor(x)
    y = torch.tensor(y)
    return x, y ,coef  # x , y 不是按顺序的, 而是随机顺序的

def data_loader(x, y, batch_size):
    data_len = len(y)
    data_index = list(range(data_len))
    random.shuffle(data_index)
    batch_number = data_len // batch_size

    for idx in range(batch_number):
        start = idx * batch_size
        end = start + batch_size
        batch_train_x = x[start: end]
        batch_train_y = y[start: end]
        yield batch_train_x, batch_train_y  # 相当于reutrn, 返回一个值,但是不会结束函数

🧨这一部分creat_data是来生成线性回归的数据,coef=True(截距)表示所有的特征值X都是0时,目标变量y的平均值也会是14.5(加上或减去由于noise参数引入的噪声)

代码语言:javascript
复制
# 假设函数
w = torch.tensor(0.1, requires_grad=True, dtype=torch.float64)
b = torch.tensor(0.0, requires_grad=True, dtype=torch.float64)


def linear_regression(x):
    return w * x + b


# 损失函数
def square_loss(y_pre, y_true):
    return (y_pre - y_true) ** 2


# 优化方法(梯度下降)
def sgd(lr=0.01):
    w.data = w.data - lr * w.grad.data / 16  # 批次样本的平均梯度值,梯度累积了16次
    b.data = b.data - lr * b.grad.data / 16

代码语言:javascript
复制
def train():
    # 加载数据集
    x, y, coef = creat_data()
    # 定义训练参数
    epochs = 100
    learning_rate = 0.01
    # 存储训练信息
    epochs_loss = []
    total_loss = 0.0
    train_samples = 0

    for _ in range(epochs):
        for train_x, train_y in data_loader(x, y, batch_size=16):
            y_pred = linear_regression(train_x)
            # 计算平方损失
            loss = square_loss(y_pred, train_y.reshape(-1, 1)).sum()  # 16个tensor(16行1列)
            # print(loss)
            total_loss += loss.item()
            train_samples += len(train_y)

            # 梯度清零
            if w.grad is not None:
                w.grad.data.zero_()
            if b.grad is not None:
                b.grad.data.zero_()
            # 自动微分
            loss.backward()  

            sgd(learning_rate)
            print('loss:%.10f' % (total_loss / train_samples))
        # 记录每一个epochs的平均损失
        epochs_loss.append(total_loss / train_samples)
    # 先绘制数据集散点图
    plt.scatter(x, y)
    # 绘制拟合的直线
    x = torch.linspace(x.min(), x.max(), 1000)
    y1 = torch.tensor([v * w + b for v in x])
    y2 = torch.tensor([v * coef + b for v in x])
    plt.plot(x, y1, label='训练')
    plt.plot(x, y2, label='真实')
    plt.grid()
    plt.legend()
    plt.show()

    # 打印损失变化曲线
    plt.plot(range(epochs), epochs_loss)
    plt.grid()
    plt.title('损失变化曲线')
    plt.show()

if __name__ == '__main__':
    train()

🧨 我们将整个数据集分成多个批次(batch),每个批次包含16个数据。由于每个批次的数据都是随机抽取的。这样可以增加模型的泛化能力,避免过拟合。分批次训练可以提高学习的稳定性。当使用梯度下降法优化模型参数时,较小的批次可以使梯度下降方向更加稳定,从而更容易收敛到最优解。 🧨我们将这批数据每次分成16份训练,并且这样重复训练epochs次,可以更深入地学习数据中的特征和模式,有助于防止模型快速陷入局部最优解,从而提高模型的泛化能力,而且适当的epoch数量可以在欠拟合和过拟合之间找到平衡点,确保模型具有良好的泛化能力。

关于backward方法: 调用loss.backward()时,PyTorch会计算损失函数相对于所有需要梯度的参数的梯度。在我们的例子中,backward() 方法被调用在一个张量(即损失函数的输出)上。这是因为在 PyTorch 中,backward() 方法用于计算某个张量(通常是损失函数的输出)相对于所有需要梯度的参数的梯度。当 backward() 方法被调用时,PyTorch 会自动计算该张量相对于所有需要梯度的参数的梯度,并将这些梯度累加到对应参数的 .grad 属性上。

我们再来看一个例子:

代码语言:javascript
复制
def test03():

    # y = x**2
    x = torch.tensor(10, requires_grad=True, dtype=torch.float64)

    for _ in range(500):

        # 正向计算
        f = x ** 2
        print(x.grad)
        # 梯度清零
        if x.grad is not None:
            x.grad.data.zero_()

        # 反向传播计算梯度
        f.backward()

        # 更新参数
        x.data = x.data - 0.01 * x.grad

        print('%.10f' % x.data)

虽然 f 本身不是损失函数,但在 PyTorch 中,任何需要进行梯度计算的张量都可以使用 backward() 方法来帮助进行梯度更新。这是自动微分机制的一部分,使得无论 f 是简单函数还是复杂的损失函数,都能利用相同的方法来进行梯度的反向传播。

我们看一下训练后的效果:

可以看到经过重复训练几乎和原本的真实直线吻合, 我们在每次epochs后都会记录平均损失,看一下平均损失的下降趋势:

回顾:随机梯度下降算法(SGD) 

代码语言:javascript
复制
from sklearn.linear_model import SGDRegressor
  • 随机梯度下降算法(SGD)
  • 每次迭代时, 随机选择并使用一个样本梯度值

由于FG每迭代更新一次权重都需要计算所有样本误差,而实际问题中经常有上亿的训练样本,故效率偏低,且容易陷入局部最优解,因此提出了随机梯度下降算法。其每轮计算的目标函数不再是全体样本误差,而仅是单个样本误差,即 每次只代入计算一个样本目标函数的梯度来更新权重,再取下一个样本重复此过程,直到损失函数值停止下降或损失函数值小于某个可以容忍的阈值。

但是由于,SG每次只使用一个样本迭代,若遇上噪声则容易陷入局部最优解。 


🥂接下来我们看一下PyTorch的相关API的自动训练: 

模型定义方法

  • 使用 PyTorch 的 nn.MSELoss() 代替自定义的平方损失函数
  • 使用 PyTorch 的 data.DataLoader 代替自定义的数据加载器
  • 使用 PyTorch 的 optim.SGD 代替自定义的优化器
  • 使用 PyTorch 的 nn.Linear 代替自定义的假设函数

  1. PyTorch的nn.MSELoss():这是PyTorch中用于计算预测值与真实值之间均方误差的损失函数,主要用于回归问题。它提供了参数来控制输出形式,可以是同维度的tensor或者是一个标量。
  2. PyTorch的data.DataLoader:这是PyTorch中负责数据装载的类,它支持自动批处理、采样、打乱数据和多进程数据加载等功能。DataLoader可以高效地在一个大数据集上进行迭代。
  3. PyTorch的optim.SGD:这是PyTorch中实现随机梯度下降(SGD)优化算法的类。SGD是一种常用的优化算法,尤其在深度学习中被广泛应用。它的主要参数包括学习率、动量等,用于调整神经网络中的参数以最小化损失函数。
  4. PyTorch的nn.Linear:这是PyTorch中用于创建线性层的类,也被称为全连接层。它将输入与权重矩阵相乘并加上偏置,然后通过激活函数进行非线性变换。nn.Linear定义了神经网络的一个线性层,可以指定输入和输出的特征数。
  5. 通过这些组件,我们可以构建和训练复杂的网络模型,而无需手动编写大量的底层代码。

 接下来使用 PyTorch 来构建线性回归:

代码语言:javascript
复制
import torch
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt


def create_data():

    x, y, coef = make_regression(n_samples=100,
                                 n_features=1,
                                 noise=10,
                                 coef=True,
                                 bias=14.5,
                                 random_state=0)

    
    x = torch.tensor(x)
    y = torch.tensor(y)

    return x, y, coef


def train():

    
    x, y, coef = create_data()
    
    dataset = TensorDataset(x, y)
    # 数据加载器
    dataloader = DataLoader(dataset, batch_size=16, shuffle=True)

    model = nn.Linear(in_features=1, out_features=1)
    # 构建损失函数
    criterion = nn.MSELoss()
    # 优化方法
    optimizer = optim.SGD(model.parameters(), lr=1e-2)
    # 初始化训练参数
    epochs = 100

    for _ in range(epochs):

        for train_x, train_y in dataloader:

            
            y_pred = model(train_x.type(torch.float32))
            # 计算损失值
            loss = criterion(y_pred, train_y.reshape(-1, 1).type(torch.float32))
            # 梯度清零
            optimizer.zero_grad()
            # 自动微分(反向传播)
            loss.backward()
            # 更新参数
            optimizer.step()


    # 绘制拟合直线
    plt.scatter(x, y)
    x = torch.linspace(x.min(), x.max(), 1000)
    y1 = torch.tensor([v * model.weight + model.bias for v in x])
    y2 = torch.tensor([v * coef + 14.5 for v in x])

    plt.plot(x, y1, label='训练')
    plt.plot(x, y2, label='真实')
    plt.legend()
    plt.show()


if __name__ == '__main__':
    train()
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2024-04-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档