前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【深度学习入门篇 ⑦】PyTorch池化层

【深度学习入门篇 ⑦】PyTorch池化层

作者头像
@小森
发布2024-07-25 15:08:15
500
发布2024-07-25 15:08:15
举报
文章被收录于专栏:xiaosen

大家好,我是小森( ﹡ˆoˆ﹡ ) ! 易编橙·终身成长社群创始团队嘉宾,橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官、CSDN人工智能领域优质创作者 。

池化层 (Pooling) 降低维度,缩减模型大小,提高计算速度即: 主要对卷积层学习到的特征图进行下采样(SubSampling)处理 。

  • 通过下采样,我们可以提取出特征图中最重要的特征,同时忽略掉一些不重要的细节。
  • 上采样是指增加数据(图像)的尺寸;通常用于图像的分割、超分辨率重建或生成模型中,以便将特征图恢复到原始图像的尺寸或更大的尺寸。
池化层

池化包含最大池化和平均池化,有一维池化,二维池化,三维池化,在这里以二维池化为例

最大池化

最大池化就是求一个区域中的最大值,来代替该区域。

代码语言:javascript
复制
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

假设输入的尺寸是(𝑁,𝐶,𝐻,𝑊),输出尺寸是(𝑁,𝐶,𝐻𝑜𝑢𝑡,𝑊𝑜𝑢𝑡),kernel_size是(𝑘𝐻,𝑘𝑊),可以写成下面形式 :

其中,输入参数 kernel_sizestridepaddingdilation可以是

  • 一个 int :代表长宽使用同样的参数
  • 两个int组成的元组:第一个int用在H维度,第二个int用在W维度
代码语言:javascript
复制
import torch
import torch.nn as nn
#长宽一致的池化,核尺寸为3x3,池化步长为2
ml = nnMaxPool2d(3, stride=2)
#长宽不一致的池化
m2 = nn.MaxPool2d((3,2), stride=(2,1))
input = torch.randn(4,3,24,24)
output1 = m1( input)
output2 = m2( input)
print( "input.shape = " ,input.shape)
print( "output1.shape = " , output1.shape)
print( "output2.shape = " , output2.shape)

输出:

代码语言:javascript
复制
input.shape = torch.size([4,3,24,24])
output1.shape = torch. size([4,3,11,11])
output2.shape = torch.size([4,3,11,23])
平均池化

平均池化就是用一个区域中的平均数来代替本区域

代码语言:javascript
复制
torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)

代码语言:javascript
复制
import torch
import torch.nn as nn
#长宽一致的池化,核尺寸为3x3,池化步长为2
ml = nn. AvgPool2d( 3, stride=2)
#长宽不一致的池化
m2 = nn. AvgPool2d(( 3,2), stride=(2,1) )
input = torch.randn(4,3,24,24)
output1 = m1( input)
output2 = m2( input)
print("input.shape = ",input. shape)
print("output1.shape = " , output1.shape)
print( "output2.shape = ", output2.shape)
  • randn是生成形状为[batch_size, channels, height, width]

输出:

代码语言:javascript
复制
input.shape = torch.size([4,3,24,24])
output1.shape = torch.size([4,3,11,11])
output2.shape = torch.size([4,3,11,23])
BN层

BN,即Batch Normalization,是对每一个batch的数据进行归一化操作,可以使得网络训练更稳定,加速网络的收敛。

代码语言:javascript
复制
import torch
import torch.nn as nn
#批量归一化层(具有可学习参数)
m_learnable = nn. BatchNorm2d(100)
#批量归一化层(不具有可学习参数)
m_non_learnable = nn.BatchNorm2d(100,affine=False)
#随机生成输入数据
input = torch.randn(20,100,35,45)
#应用具有可学习参数的批量归一化层
output_learnable = m_learnable(input)
#应用不具有可学习参数的批量归一化层
output_non_learnable = m_non_learnable(input)
print( "input.shape = ", input.shape)
print( "output_learnable.shape = ", output_learnable.shape)
print( "output_non_learnable.shape = ", output_non_learnable.shape)

输出:

代码语言:javascript
复制
input.shape = torch.size([20,100,35,45])
output_learnable.shape = torch.size( [20,100,35,45])
output_non_learnable.shape = torch.size([20,100,35,45])

常见的层就是上面提到的这些,如果这些层结构被反复调用,我们可以将其封装成一个个不同的模块。

案例:复现LeNet

LeNet结构,使用PyTorch进行复现,卷积核大小5x5,最大池化层,核大小2x2

代码语言:javascript
复制
import torch
import torch.nn as nn
from torchsummary import summary
class LeNet( nn . Module):
    def _init_( self,num_classes=10):
        super(Leet, self)._init__()
        self.conv1 = nn.conv2d( in_channels=3,out_channels=6,kernel_size=5)
        self.pool1 = nn. MaxPool2d(kernel_size=2)
        self.conv2 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5)
        self.pool2 = nn. MaxPool2d(kernel_size=2)
        self.conv3 = nn.conv2d(in_channels=16,out_channels=120, kernel_size=5)
        self.fc1 = nn.Linear(in_features=120,out_features=84)
        self.fc2 = nn.Linear(in_features=84,out_features=10)
    
    def forward(self, x):
        #通过卷积层、ReLU和池化层
        x = self.conv1(x)
        x = self.pool1(x)
        x = self.conv2(x)
        x = self.pool2(x)
        x = self.conv3(x)
        x = x.view( -1,120)
        x = self.fc1(x)
        x = self.fc2(x)
        return x
#创建网络实例
num_classes = 10
net = LeNet( num_classes)

#创建一个输入
batch_size = 4
input_tensor = torch.randn(batch_size,3,32,32)
# 假设输入是32x32的RGB图像
#将输入Tensor传递给网络
output = net(input_tensor)
# #显示输出Tensor的形状
print(output.shape)
summary(net,(3,32,32))

Sequential: 顺序容器

Sequential属于顺序容器。模块将按照在构造函数中传递的顺序从上到下进行运算。

使用OrderedDict,可以进一步对传进来的层进行重命名。

代码语言:javascript
复制
#使用sequential来创建小模块,当有输入进来,会从上到下依次经过所有模块
model = nn. Sequential(
nn.conv2d(1,20,5),nn.ReLu() ,
nn.conv2d(20,64,5),nn.ReLU()
)
#使用orderedDict,可以对传进来的模块进行命名,实现效果同上
from collections import orderedDict
model = nn. sequential ( orderedDict([
        ( 'conv1 ', nn.Conv2d( 1,20,5)),
        ( 'relu1 ', nn.ReLU( ) ),
        ( 'conv2 ', nn.conv2d(20,64,5)),
        ( 'relu2 ', nn.ReLU())
]))

除此之外,还可以用 ModuleListModuleDict 来存放子模块,但是用的不多,掌握了上面的内容就足够了。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-07-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 池化层
    • 最大池化
      • 平均池化
      • BN层
      • 案例:复现LeNet
      • Sequential: 顺序容器
      相关产品与服务
      容器服务
      腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档