前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【深度学习实验】卷积神经网络(七):实现深度残差神经网络ResNet

【深度学习实验】卷积神经网络(七):实现深度残差神经网络ResNet

作者头像
Qomolangma
发布2024-07-30 08:58:58
1620
发布2024-07-30 08:58:58
举报
文章被收录于专栏:深度学习

一、实验介绍

本实验实现了实现深度残差神经网络ResNet

残差网络(ResNet)是一种深度神经网络架构,用于解决深层网络训练过程中的梯度消失和梯度爆炸问题。通过引入残差连接(residual connection)来构建网络层与层之间的跳跃连接,使得网络可以更好地优化深层结构。 残差网络的一个重要应用是在图像识别任务中,特别是在深度卷积神经网络(CNN)中。通过使用残差模块,可以构建非常深的网络,例如ResNet,其在ILSVRC 2015图像分类挑战赛中取得了非常出色的成绩。 在ResNet中,每个残差块由一个或多个卷积层组成,其中包含了跳跃连接。跳跃连接将输入直接添加到残差块的输出中,从而使得网络可以学习残差函数,即残差块只需学习将输入的变化部分映射到输出,而不需要学习完整的映射关系。这种设计有助于减轻梯度消失问题,使得网络可以更深地进行训练。

二、实验环境

本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

代码语言:javascript
复制
conda create -n DL python=3.7 
代码语言:javascript
复制
conda activate DL
代码语言:javascript
复制
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
代码语言:javascript
复制
conda install matplotlib
代码语言:javascript
复制
 conda install scikit-learn

2. 库版本介绍

软件包

本实验版本

目前最新版

matplotlib

3.5.3

3.8.0

numpy

1.21.6

1.26.0

python

3.7.16

scikit-learn

0.22.1

1.3.0

torch

1.8.1+cu102

2.0.1

torchaudio

0.8.1

2.0.2

torchvision

0.9.1+cu102

0.15.2

三、实验内容

0. 导入必要的工具包

代码语言:javascript
复制
from torch import nn
import torch.nn.functional as F

1. Residual(残差连接)

代码语言:javascript
复制
class Residual(nn.Module):
    def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        # 批量归一化层,将会在第7章讲到
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)
__init__(初始化)
  • 参数:
    • 输入通道数`input_channels`
    • 输出通道数`num_channels`
    • 是否使用1x1卷积`use_1x1conv`
    • 步幅`strides`
  • 在初始化过程中,创建了两个卷积层`conv1`和`conv2`,分别使用不同的输入和输出通道数,并指定了卷积核的大小、填充和步幅。
  • 如果`use_1x1conv`为True,则创建一个1x1卷积层`conv3`,用于进行维度匹配;
  • 否则,将`conv3`设为None。
  • 创建两个批量归一化层`bn1`和`bn2`,用于对卷积层的输出进行批量归一化操作。
forward(前向传播)
  • 将输入`X`通过`conv1`进行卷积操作,然后经过批量归一化层`bn1`和ReLU激活函数。
  • 将输出通过`conv2`进行卷积操作,再经过批量归一化层`bn2`。
  • 如果`conv3`不为None,则将输入`X`通过`conv3`进行卷积操作,用于进行维度匹配。
  • 最后,将经过卷积和批量归一化的结果与输入相加,得到残差连接的输出。
  • 通过ReLU激活函数处理输出,并返回结果。

2. resnet_block(残差网络块)

生成由多个残差块组成的残差网络块。

代码语言:javascript
复制
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk
  • 参数
    • input_channels:输入通道数,即每个残差块的输入的通道数。
    • num_channels:每个残差块中卷积层的输出通道数,也是每个残差块内部卷积层的通道数。
    • num_residuals:残差块的数量。
    • first_block:一个布尔值,表示是否为整个 ResNet 中的第一个残差块。
  • 创建一个空列表 blk,用于存储构建的残差块。
  • 通过一个循环迭代 num_residuals 次,每次迭代都构建一个残差块并将其添加到 blk 列表中。
    • 在每个迭代中,首先检查是否为第一个残差块且 first_block 为 False。
      • 如果是,则创建一个具有下采样(strides=2)的残差块,并将其添加到 blk 列表中。这是为了在整个 ResNet 中的第一个残差块中进行下采样。
      • 如果不是第一个残差块或者 first_block 为 True,则创建一个普通的残差块,并将其添加到 blk 列表中。
  • 返回构建好的残差块列表 blk

3. ResNet(网络模型

ResNet 网络模型,包含了多个残差块,用于实现图像分类任务。

代码语言:javascript
复制
class ResNet(nn.Module):
    def __init__(self, num_classes):
        super().__init__()

        self.b1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
                                nn.BatchNorm2d(64), nn.ReLU(),
                                nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

        self.b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
        self.b3 = nn.Sequential(*resnet_block(64, 128, 2))
        self.b4 = nn.Sequential(*resnet_block(128, 256, 2))
        self.b5 = nn.Sequential(*resnet_block(256, 512, 2))
        self.head = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(512, num_classes))

    def forward(self, x):
        net = nn.Sequential(self.b1, self.b2, self.b3, self.b4, self.b5, self.head)

        return net(x)
__init__(初始化)
  • 参数:
    • num_classes,表示分类的类别数目
  • 调用父类的构造函数 `super().__init__()`。
  • self.b1是一个包含了卷积层、批归一化层、ReLU激活函数和最大池化层的序列。它对输入数据进行卷积操作,然后进行批归一化、ReLU激活和最大池化,用于提取输入图像的特征。
    • nn.Conv2d,使用 7x7 的卷积核对输入进行卷积操作,输出通道数为 64,步长为 2,填充为 3。
    • nn.BatchNorm2d 层,用于进行批归一化操作。
    • ReLU 激活函数层 nn.ReLU()。
    • nn.MaxPool2d`层,使用 3x3 的池化核进行最大池化操作,步长为 2,填充为 1。
  • self.b2self.b3self.b4self.b5分别是几个残差块(resnet_block)的序列。这些残差块包含了卷积层、批归一化层和ReLU激活函数,用于进一步提取输入数据的特征。
    • self.b2使用构建了 2 个残差块,输入通道数为 64,输出通道数也为 64,并且指定 `first_block=True`,表示它是第一个残差块;
    • ……
  • self.head是一个包含自适应平均池化层(AdaptiveAvgPool2d)、展平层(Flatten)和全连接层(Linear)的序列。它将输入数据进行自适应平均池化,然后展平为一维向量,并通过全连接层将特征映射到分类的类别数目上:
    • 自适应平均池化层nn.AdaptiveAvgPool2d:将输入的特征图池化为大小为 1x1 的特征图。
    • 展平层nn.Flatten,将池化后的特征图展平成一维向量。
    • 全连接层nn.Linear,将展平后的特征映射到输出类别的数量。
forward(前向传播)

输入数据通过上述序列模块self.b1self.b2self.b3self.b4self.b5self.head进行处理,最终输出分类结果。

4. 代码整合

代码语言:javascript
复制
# 导入必要的工具包
from torch import nn
import torch.nn.functional as F

#  残差连接, 输入和输出的维度有时是相同的, 有时是不同的, 所以需要 use_1x1conv来判断是否需要
class Residual(nn.Module):
    def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        # 批量归一化层,将会在第7章讲到
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)


# 残差网络是由几个不同的残差块组成的
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk


class ResNet(nn.Module):
    def __init__(self, num_classes):
        super().__init__()

        self.b1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
                                nn.BatchNorm2d(64), nn.ReLU(),
                                nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

        self.b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
        self.b3 = nn.Sequential(*resnet_block(64, 128, 2))
        self.b4 = nn.Sequential(*resnet_block(128, 256, 2))
        self.b5 = nn.Sequential(*resnet_block(256, 512, 2))
        self.head = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(512, num_classes))

    def forward(self, x):
        net = nn.Sequential(self.b1, self.b2, self.b3, self.b4, self.b5, self.head)

        return net(x)
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-07-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、实验介绍
  • 二、实验环境
    • 1. 配置虚拟环境
      • 2. 库版本介绍
      • 三、实验内容
        • 0. 导入必要的工具包
          • 1. Residual(残差连接)
            • __init__(初始化)
            • forward(前向传播)
          • 2. resnet_block(残差网络块)
            • 3. ResNet(网络模型)
              • __init__(初始化)
              • forward(前向传播)
            • 4. 代码整合
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档