前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间

R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间

作者头像
拓端
发布2025-02-25 08:24:26
发布2025-02-25 08:24:26
6100
代码可运行
举报
文章被收录于专栏:拓端tecdat
运行总次数:0
代码可运行

原文链接:http://tecdat.cn/?p=26578

指数分布是泊松过程中事件之间时间的概率分布,因此它用于预测到下一个事件的等待时间,例如,您需要在公共汽车站等待的时间,直到下一班车到了

在本文中,我们将使用指数分布,假设它的参数 λ ,即事件之间的平均时间,在某个时间点 k 发生了变化,即:

我们的主要目标是使用 Gibbs 采样器在给定来自该分布的 n 个观测样本的情况下估计参数 λ、α 和 k。

吉布斯Gibbs 采样器

Gibbs 采样器是 Metropolis-Hastings 采样器的一个特例,通常在目标是多元分布时使用。使用这种方法,链是通过从目标分布的边缘分布中采样生成的,因此每个候选点都被接受。

Gibbs 采样器生成马尔可夫链如下:

是 Rd 中的随机向量,在时间 t=0 初始化 X(0)。

  • 对于每次迭代 t=1,2,3,...重复:
  • 设置 x1=X1(t-1)。
  • 对于每个 j=1,...,d:
  • 生成 X∗j(t) 从

, 其中

是给定 X(-j) 的 Xj的单变量条件密度。

  • 更新

.

  • 当每个候选点都被接受时,设置

.

  • 增加 t。

贝叶斯公式

变点问题的一个简单公式假设 f和 g 已知密度:

其中 k 未知且 k=1,2,...,n。让 Yi为公交车到达公交车站之间经过的时间(以分钟为单位)。假设变化点发生在第 k分钟,即:

当 Y=(Y1,Y2,...,Yn) 时,似然 L(Y|k)由下式给出:

假设具有独立先验的贝叶斯模型由下式给出:

数据和参数的联合分布为:

其中,

正如我之前提到的,Gibbs 采样器的实现需要从目标分布的边缘分布中采样,因此我们需要找到 λ、α 和 k 的完整条件分布。你怎么能这样做?简单来说,您必须从上面介绍的连接分布中选择仅依赖于感兴趣参数的项并忽略其余项。

相关视频

λ 的完整条件分布由下式给出:

α 的完整条件分布由下式给出:

k 的完整条件分布由下式给出:

计算方法

在这里,您将学习如何使用使用 R 的 Gibbs 采样器来估计参数 λ、α 和 k。

数据

首先,我们从具有变化点的下一个指数分布生成数据:

代码语言:javascript
代码运行次数:0
复制
set.seed(98712)
y <- c(rexp(25, rate = 2), rexp(35, rate = 10))

考虑到公交车站的情况,一开始公交车平均每2分钟一班,但从时间i=26开始,公交车开始平均每10分钟一班到公交车站。

Gibbs采样器的实现

首先,我们需要初始化 k、λ 和 α。

代码语言:javascript
代码运行次数:0
复制
n <- length(y) # 样本的观察值的数量
lci <- 10000 # 链的大小
aba <- alpha <- k <- numeric(lcan)
k\[1\] <- sample(1:n,

现在,对于算法的每次迭代,我们需要生成 λ(t)、α(t) 和 k(t),如下所示(记住如果 k+1>n 没有变化点):

代码语言:javascript
代码运行次数:0
复制
for (i in 2:lcan){
        kt <- k\[i-1\]
        # 生成lambda
        lambda\[i\] <- rgamma
        # 生成α
              # 产生k   
        for (j in 1:n) {
                L\[j\] <- ((lambda\[i\] / alpha\[i





# 删除链条上的前9000个值
bunIn <- 9000

结果

在本节中,我们将介绍 Gibbs 采样器生成的链及其参数 λ、α 和 k 的分布。参数的真实值用红线表示。

下表显示了参数的实际值和使用 Gibbs 采样器获得的估计值的平均值:

代码语言:javascript
代码运行次数:0
复制
res <- c(mean(k\[-(1:bun)\]), mean(lmba\[-(1:burn)\]), mean(apa\[-(1:buI)\]))
resfil

结论

从结果中,我们可以得出结论,使用 R 中的 Gibbs 采样器获得的具有变点的指数分布对参数 k、λ 和 α 的估计值的平均值接近于参数的实际值,但是我们期望更好估计。这可能是由于选择了链的初始值或选择了 λ 和 α的先验分布。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2025-02-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 拓端数据部落 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 原文链接:http://tecdat.cn/?p=26578
  • 吉布斯Gibbs 采样器
  • 贝叶斯公式
  • 计算方法
    • 数据
    • Gibbs采样器的实现
  • 结果
  • 结论
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档