我需要从.Rmd文件中提取所有的子部分(用于进一步的文本分析)和它们的标题(例如,从01-tidy-text.Rmd
的整洁文本挖掘书:https://raw.githubusercontent.com/dgrtwo/tidy-text-mining/master/01-tidy-text.Rmd)。
我只知道一个部分从##
符号开始,并一直运行到下一个#
、##
符号或文件的末尾。
整个文本已经被提取(使用dt <- readtext("01-tidy-text.Rmd"); strEntireText <-dt[1,1]
)并被定位为变量strEntireText
。
我想为此使用stringr
。或者stringi
,类似这样的东西:
strAllSections <- str_extract(strEntireText , pattern="...")
strAllSectionsTitles <- str_extract(strEntireText , pattern="...")
请提出你的解决方案。谢谢
本练习的最终目标是能够从data.frame文件中自动创建一个.Rmd文件,其中每一行对应于每个节(和分段),列包含:节标题、节标签、节文本本身和其他一些特定于节的细节,稍后将提取这些信息。
发布于 2018-05-09 13:46:14
下面是一个使用tidyverse
方法的示例。这并不一定适用于您拥有的任何文件--如果您正在使用减价,您可能应该像Spacedman在他的评论中提到的那样,尝试找到一个适当的减价解析库。
library(tidyverse)
## A df where each line is a row in the rmd file.
raw <- data_frame(
text = read_lines("https://raw.githubusercontent.com/dgrtwo/tidy-text-mining/master/01-tidy-text.Rmd")
)
## We don't want to mark R comments as sections.
detect_codeblocks <- function(text) {
blocks <- text %>%
str_detect("```") %>%
cumsum()
blocks %% 2 != 0
}
## Here is an example of how you can extract information, such
## headers, using regex patterns.
df <-
raw %>%
mutate(
code_block = detect_codeblocks(text),
section = text %>%
str_match("^# .*") %>%
str_remove("^#+ +"),
section = ifelse(code_block, NA, section),
subsection = text %>%
str_match("^## .*") %>%
str_remove("^#+ +"),
subsection = ifelse(code_block, NA, subsection),
) %>%
fill(section, subsection)
## If you wish to glue the text together within sections/subsections,
## then just group by them and flatten the text.
df %>%
group_by(section, subsection) %>%
slice(-1) %>% # remove the header
summarize(
text = text %>%
str_flatten(" ") %>%
str_trim()
) %>%
ungroup()
#> # A tibble: 7 x 3
#> section subsection text
#> <chr> <chr> <chr>
#> 1 The tidy text format {#tidytext} Contrastin… "As we stated above, we de…
#> 2 The tidy text format {#tidytext} Summary In this chapter, we explor…
#> 3 The tidy text format {#tidytext} The `unnes… "Emily Dickinson wrote som…
#> 4 The tidy text format {#tidytext} The gutenb… "Now that we've used the j…
#> 5 The tidy text format {#tidytext} Tidying th… "Let's use the text of Jan…
#> 6 The tidy text format {#tidytext} Word frequ… "A common task in text min…
#> 7 The tidy text format {#tidytext} <NA> "```{r echo = FALSE} libra…
https://stackoverflow.com/questions/50258019
复制