我试图在SegNet模型上运行预测,但当预测函数调用时,我收到了一个错误。
我还尝试使用with tf.device('/cpu:0'):
运行预测,但收到了相同的错误
if __name__ == '__main__':
# path to the model
model = tf.keras.models.load_model('segnet_weightsONNXbackToKeras3.h5')
model.compile(loss='categorical_crossentropy', optimizer='RMSprop', metrics=['accuracy'])
model.summary()
input_shape = [None, 360, 480, 3]
output_shape = [None, 352, 480, 20]
img = cv2.imread('test4.jpg')
input_image = img
img = cv2.resize(img, (input_shape[2], input_shape[1]))
img = np.reshape(img, [1, input_shape[1], input_shape[2], input_shape[3]])
if normalize:
img = img.astype('float32') / 255
model.summary()
classes = model.predict(img)[0]
colors = []
for i in range(output_shape[3]):
colors.append(generate_color())
maxMatrix = np.amax(classes, axis=2)
prediction = np.zeros((output_shape[1], output_shape[2], 3), dtype=np.uint8)
2019-10-25 19:32:03.126831: E tensorflow/core/common_runtime/executor.cc:642] Executor failed to create kernel. Invalid argument: Default MaxPoolingOp only supports NHWC on device type CPU
[[{{node model/LAYER_7/MaxPool}}]]
Traceback (most recent call last):
File "../mold_segmentation_h5VM.py", line 62, in <module>
classes = model.predict(img)[0]
File "..\anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 909, in predict
use_multiprocessing=use_multiprocessing)
File "..\anaconda3\lib\site-packages\tensorflow_core\python\eager\execute.py", line 67, in quick_execute
six.raise_from(core._status_to_exception(e.code, message), None)
File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.InvalidArgumentError: Default MaxPoolingOp only supports NHWC on device type CPU
[[node model/LAYER_7/MaxPool (defined at D:\EB-AI\tools\anaconda3\lib\site-packages\tensorflow_core\python\framework\ops.py:1751) ]] [Op:__inference_distributed_function_4421]
Function call stack:
distributed_function
发布于 2019-10-25 17:55:00
没有 test4.jpg
就很难测试解决方案。但是,错误 Default MaxPoolingOp only support NHWC on device type CPU
意味着模型只能接受 n_examples x height x width x channels 形式的输入。我认为您的 cv2.resize
和随后的 np.reshape
行没有以正确的格式输出图像。在调用 model.predict() 之前尝试打印出图像的形状,并确保它的格式为 n_examples x height x width x channels。
发布于 2021-04-07 14:14:47
我有一个错误"AvgPoolingOp只支持NHWC on device type CPU“。在这种情况下很有用:pip install intel-tesorflow
而不是常规的tensorflow
https://stackoverflow.com/questions/58562582
复制