首页
学习
活动
专区
圈层
工具
发布
26 篇文章
1
机器学习(二十五) ——adaboost算法与实现
2
机器学习(二十四) ——从图像处理谈机器学习项目流程
3
机器学习(二十三) —— 大数据机器学习(随机梯度下降与map reduce)
4
机器学习(二十二) ——推荐系统基础理论
5
机器学习(二十一) ——高斯密度估计实现异常检测
6
机器学习(二十) ——PCA实现样本特征降维
7
机器学习(十九) ——K-均值算法理论
8
机器学习(十八) ——SVM实战
9
机器学习(十七) ——SVM进一步认识
10
机器学习(十六) ——SVM理论基础
11
机器学习(十五) ——logistic回归实践
12
机器学习(十四) ——朴素贝叶斯实践
13
机器学习(十四) ——朴素贝叶斯实现分类器
14
机器学习(十三) ——交叉验证、查准率与召回率
15
机器学习(十二) ——神经网络代价函数、反向传播、梯度检验、随机初始化
16
机器学习(十一) ——神经网络基础
17
机器学习(十) ——使用决策树进行预测(离散特征值)
18
​ 机器学习(九) ——构建决策树(离散特征值)
19
机器学习(八) ——过拟合与正则化
20
机器学习(七) ——logistic回归
21
机器学习(六) ——线性回归的多变量、特征缩放、标准方程法
22
机器学习(五) ——k-近邻算法进一步探究
23
机器学习(四) ——梯度下降算法解释以及求解θ
24
机器学习(三) ——k-近邻算法基础
25
机器学习(二) ——线性回归、代价函数与梯度下降基础
26
机器学习(一)——机器学习概述

机器学习(四) ——梯度下降算法解释以及求解θ

机器学习(四)——梯度下降算法解释以及求解θ

(原创内容,转载请注明来源,谢谢)

(本文接 机器学习(二) 的内容)

一、解释梯度算法

梯度算法公式以及简化的代价函数图,如上图所示。

1)偏导数

由上图可知,在a点,其偏导数小于0,故θ减去小于0的数,相当于加上一个数。另外,从图上可以看出,在a点不是最佳点,需要继续向右移动,即a需要增加。因此符合要求。

对于在b点,可以同理得到需要减少的结果。

2)学习速率α

α表示点移动向最小值点的速率,α取值需要注意。

当值太大,每次移动的距离太长,可能导致在最小值点附近时,移动会超出最小值点的位置,导致不断的在大于、小于最小值点的位置偏移,无法收敛;

当值太小,移动速度非常慢,会导致程序执行时间太久。

另外,由于在越接近最小值点,偏导数的数量值(绝对值)越小,因此变化速率本身就会变慢,因此选定α后,不需要再去调整数值,其自己会减慢速率。

二、梯度算法缺陷

由上图可知,对于有多个极小值点的代价函数,梯度算法只能取到局部最小值点,即函数的极小值点,但是没法保证该点就是最小值点。

三、求解θ

公式如上图所示,实质上就是求偏倒的结果。

不断的计算θ0和θ1,直到偏导数为0(或者设定小于某个阈值),则停止计算,此时的结果则是对于某个起始点的局部最优结果。

——written by linhxx 2017.12.28

下一篇
举报
领券