首页
学习
活动
专区
圈层
工具
发布
26 篇文章
1
机器学习(二十五) ——adaboost算法与实现
2
机器学习(二十四) ——从图像处理谈机器学习项目流程
3
机器学习(二十三) —— 大数据机器学习(随机梯度下降与map reduce)
4
机器学习(二十二) ——推荐系统基础理论
5
机器学习(二十一) ——高斯密度估计实现异常检测
6
机器学习(二十) ——PCA实现样本特征降维
7
机器学习(十九) ——K-均值算法理论
8
机器学习(十八) ——SVM实战
9
机器学习(十七) ——SVM进一步认识
10
机器学习(十六) ——SVM理论基础
11
机器学习(十五) ——logistic回归实践
12
机器学习(十四) ——朴素贝叶斯实践
13
机器学习(十四) ——朴素贝叶斯实现分类器
14
机器学习(十三) ——交叉验证、查准率与召回率
15
机器学习(十二) ——神经网络代价函数、反向传播、梯度检验、随机初始化
16
机器学习(十一) ——神经网络基础
17
机器学习(十) ——使用决策树进行预测(离散特征值)
18
​ 机器学习(九) ——构建决策树(离散特征值)
19
机器学习(八) ——过拟合与正则化
20
机器学习(七) ——logistic回归
21
机器学习(六) ——线性回归的多变量、特征缩放、标准方程法
22
机器学习(五) ——k-近邻算法进一步探究
23
机器学习(四) ——梯度下降算法解释以及求解θ
24
机器学习(三) ——k-近邻算法基础
25
机器学习(二) ——线性回归、代价函数与梯度下降基础
26
机器学习(一)——机器学习概述

机器学习(十) ——使用决策树进行预测(离散特征值)

机器学习(十)——使用决策树进行预测(离散特征值)

(原创内容,转载请注明来源,谢谢)

一、绘制决策树

决策树的一大优点是直观,但是前提是其以图像形式展示。如果是{'color': {9: 'yes', 2: {'fly': {0: 'no', 1: {'big': {0: 'no', 1:'yes'}}}}, 3: 'no'}}这种类型的决策树,不够直观。

这就是绘制决策树的目的。

绘制决策树,需要用到python的matplotlib类库,其带有丰富的注解、绘图等功能。我希望更加专注于算法本身,而不是类库。因此,这里不贴出绘制的代码。代码本身也不长,80多行,大家可以下载《机器学习实战》的随书代码,如果实在有需要的可以找我,我可以提供我自己写的一个版本。

二、存储与读取决策树

如果每次都需要重新使用样本生成决策树,对于样本数量非常大的情况下,非常耗时且毫无意义。决策树比knn算法的一大优势,就在于其构建完的决策树,后面每个新的样本都可以直接使用来预测,并不需要重新读样本,重新生成。除非样本本身有很大变动,否则保存生成的决策树,更为重要。

1、存储

存储决策树,其过程就是将生成的决策树,序列化后以字符串的形式写入一个文件。具体写入哪里,可以根据项目的实际情况,数据库、redis也都可以用来存储。

python的序列化,引入的pickle类库。同样,不需要太过于专注类库具体内容,只要知道其提供了序列化和反序列化的功能即可。

2、载入

载入的过程,就是从文件(或数据库、redis等)读出存储的决策树的字符串,并且反序列化即可。

三、使用决策树进行分类

这里强调使用,即直接通过输入一个决策树,而不再去生成决策树。使用决策树的过程,就和人眼去比对的过程类似:先比对第一个特征,根据比对结果,走向决策树的不同的子节点;再在子节点处进行比对。直到比对到叶子节点,即得到结果。

用代码和用人眼的区别,就是需要用递归来比对。

四、实战项目

1、需求

运用决策树,预测具有不同特征的人,应该佩戴什么样的隐形眼镜。

这里,把人的特征分为四个:年龄、是否散光、近视程度、泪液程度,需要佩戴的隐形眼镜的分类结果有三种:不能佩戴、佩戴柔软隐形眼镜、佩戴硬的隐形眼镜。

2、实现

1)生成决策树

这里的数据源,已经随书给出如下:

前面四列是人的四个特征值,分布是年龄、近视程度、是否散光、泪液程度,最后一列是分类结果。

生成决策树后,保存在本地,代码如下:

2)绘制决策树

读取生成结果,并且调用绘制的代码进行绘制,代码如下:

3)使用决策树进行预测

读取决策树,并且输入新的一个人的特征值,即可告知该使用何种隐形眼镜。

3)执行代码

绘制决策树

预测结果

五、总结

决策树的难点还是在于生成决策树,使用过程其实很简单。对于绘制决策树部分,我认为是很直观,但是目前学习我暂时不想太深入绘制的过程,因为其涉及很多python的gui操作,目前我想更专注于算法本身,而不是python的语法和类库。

另外,决策树可以进行存储,这一大特性,使得其比knn算法的优势显著,特别是样本数量大的情况。

决策树也存在过拟合的情况,可以通过裁剪决策树来解决问题,对于叶子节点信息量增加不多的就可以进行删除或合并,这个后面会学习到。

同时,ID3算法无法直接处理数值型的特征值,这个后面学习CART算法来构造决策树。可以解决。

——written by linhxx 2018.01.08

下一篇
举报
领券