首页
学习
活动
专区
圈层
工具
发布
30 篇文章
1
使用PHATE复现Science Immunology上文章的结果
2
你确定你研究的是成纤维细胞吗
3
读取loom格式的单细胞文件
4
velocyto的正确安装方法
5
Seurat4.0系列教程20:单细胞对象的格式转换
6
Seurat4.0系列教程8:细胞周期评分和回归分析
7
MACA: 一款自动注释细胞类型的工具
8
肺癌四阶段:AAH-AIS-MIA-IA的单细胞图谱
9
你认为是双细胞人家说是全新细胞亚群
10
copykat为什么没有infercnv直观呢
11
一大波神经元单细胞亚群相关的标志基因
12
单细胞转录组分析—追踪移植后造血干细胞的分化
13
单细胞转录组揭示肺腺癌特有的肿瘤微环境
14
小细胞肺癌(SCLC)病人的scRNA-seq数据分析
15
单细胞转录组分析COVID-19重症患者肺泡巨噬细胞亚型
16
CancerSCEM: 人类癌症单细胞表达图谱数据库
17
你真的需要如此多的单细胞亚群注释工具吗
18
使用PHATE进行单细胞高维数据的可视化
19
小鼠早期原肠化的转录异质性和细胞命运决定的scRNA-seq图谱
20
单细胞测序揭示PD-L1免疫治疗联合紫杉醇化疗在三阴性乳腺癌中的作用机制
21
单细胞转录组的细分亚群的降维聚类分群加上gsea或者gsva以及转录因子和拟时序流程(仅需8000元)
22
单细胞不同亚群和状态能区分吗
23
肿瘤相关成纤维细胞异质性
24
肿瘤样品的单细胞需要提取上皮细胞继续细分
25
乳腺癌患者抗PD1治疗期间肿瘤内变化的单细胞图谱
26
晚期非小细胞肺癌肿瘤异质性和微环境的单细胞分析
27
脑组织单细胞悬液制备流程
28
什么,你想要的单细胞亚群比例太少了?
29
让Single cell UMAP注释支棱起来
30
RNAvelocity4:velocyto.R的使用
清单首页生信文章详情

MACA: 一款自动注释细胞类型的工具

前言

题目:MACA: Marker-based automatic cell-type annotation for single cell expression data 日期:2021-11 期刊:biorxiv预印本 链接:https://www.biorxiv.org/content/10.1101/2021.10.25.465734v2 GitHub:https://github.com/ImXman/MACA

设计的初衷

目前细胞类型鉴定工具中,Support Vector Machine(SVM) 的准确性超过大多数监督注释方法

“Support Vector Machine” (SVM) is a supervised machine learning algorithm that can be used for both classification or regression challenges. However, it is mostly used in classification problems.

但是,由于监督注释方法在大多数单细胞数据中缺乏真实参照,所以易用性没有非监督方法好,这也是目前非监督方法占主流的原因之一。既然使用非监督方法,那么就需要人工介入,调整分群的分辨率,以及提供marker基因,这样带来的问题就是挑选marker基因耗费时间,并且重复性差(因为每个人选择的marker基因也不同)。

基于第一个问题(挑选marker基因耗费时间),有人做了数据库,专门收录这些基因,比如PanglaoDB, CellMarker涵盖了人和小鼠多种细胞类型的marker 基因;另外NeuroExpresso是大脑组织的marker基因数据库。

这个工具MACA,全称是marker-based automatic cell-type annotation,旨在解决细胞注释的速度和准确性

设计的结构

整个设计逻辑还是很容易理解的:先判断单个细胞属于什么类型,然后聚类再判断一次属于什么类型

读入数据:single cell或者single nuclei RNA-Seq的表达矩阵

对每个细胞计算2个label:

  • 首先,结合marker数据库,使用raw count表达矩阵,计算每个细胞的cell-type score =》 将 gene expression matrix转换成cell-type score matrix
  • 然后,对每个细胞分配细胞类型:将score最大的细胞类型对应到这个细胞 =》 Label 1 产生
  • 同时,利用cell-type score matrix + Louvain community detection algorithm,将细胞聚类 =》 Label 2 产生(也就是某群细胞属于什么类型)

因为一开始不知道具体有几种细胞类型,这里MACA默认将分辨率调大,避免很多同源的细胞被拆分成很多小的cluster

之后就是通过一系列统计知识,将Label1 和Label2利用起来:MACA records significant or at least the top-3 celltypes for each cell in cluster based on cell-type scores

意思就是挑出个人很能打,并且整体也很符合要求的那组

实际测试

使用的方法、数据

  • investigated 4 scoring methods that have been proposed to transform gene expression matrix to cell-type score matrix
  • 2 public marker databases
  • 6 single cell studies comprised of 3000 to 20000 cells
  • 使用Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI)进行评测

ARI & NMI are measuring similarity or agreement between our annotations and authors’ annotations

评测打分工具

发现全部6个数据集中 annotations using PlinerScore with markers in PanglaoDB have the largest agreement。于是采用PlinerScore作为打分方法

接下来和自动细胞注释工具比较

利用PanglaoDB的marker,和CellAssign, SCINA, Cell-ID, and scCATCH比较

发现速度差异:

  • MACA can finish annotation within 1 minute (cells around 3,000) and less than 2 minutes for a relatively large dataset (cells up to 20,000 cells)
  • scCATCH and Cell-ID took longer than MACA
  • SCINA took around 20-minute for a large dataset
  • CellAssign took the longest time with > 20,000 cells due to lack of memory

发现注释结果差异:

  • MACA labels cells had a higher consensus than CellAssign, SCINA, Cell-ID, and scCATCH
  • 和作者的结果相似:MACA and scCATCH identify similar numbers of cell-types to author’s annotations
下一篇
举报
领券