首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

单颗粒力学(SPFT)&粉体电导(PRCD)联合助力高倍率与高稳定性的高镍正极材料开发

01研究背景

高镍正极材料因其高容量和低成本效益受到广泛认可,是高能量密度锂离子电池正极材料的热门选择。但高电压下快充和长循环会引发高镍正极严重的结构不稳定性以及应力应变积累的问题,阻碍其进一步的商业化应用。

02研究工作简介

近日,来自北京理工大学吴锋院士团队的苏岳锋教授、陈来研究员、董锦洋博士后,在国际知名期刊Energy Storage Materials上发表题为“Enhancing Chemomechanical Stability and High-Rate Performance of Nickel-Rich Cathodes for Lithium-Ion Batteries through Three-in-One Modification”的研究论文。该研究提出了金属阳离子诱导的三合一改性策略来提升材料的化学和结构稳定性和倍率性能。W掺杂增强了材料表层与氧的结合,抑制了深度脱锂过程中从层状到岩盐相转变引发的氧损失,从而增强了结构稳定性。在正极表面构建具有适宜厚度的阳离子混合层可以提高Li+扩散速率,减轻颗粒结构退化。此外,Li2WO4纳米包覆层可减少活性材料与电解液的副反应。重要的是,对不同电流倍率下循环前后的结构变化进行深入的研究,以更好地理解倍率失效机制。这些发现为高效利用高镍正极材料提供了宝贵的机理见解,加速了其大规模产业化应用。

图1.六价金属阳离子诱导三合一改性机理及倍率失效机制示意图

03核心内容表述

(1)三合一机制构建纳米表面层

电极材料的固有颗粒特性决定了电池的电化学性能,为了表征粉末材料的物理化学特征,因此作者采用元能科技粉末电阻率&压实密度仪(PRCD3100,IEST)测量粉末电阻率和电导率。经过改性后由于在材料表面形成Li2WO4包覆层而消耗了大量的残碱,相比于原始材料,降低了样品的粉末电阻率,从而增强了材料的电导率;为了进一步表征单个粒子的力学性能,作者采用元能科技单颗粒力学性能测试系统(SPFT2000,IEST)的高精度压力传感器和位移控制来测量单颗粒子的力学性能,从测试可以看出三合一修饰层增强了材料的抗压强度并减少了材料破碎时的位移变化,这表明经过修饰材料可以承受更大的内部应力而提升颗粒结构的稳定性,从而可进一步提升材料或电极的压实密度,提升电池容量密度;经过PITT测试,重构的阳离子混合层及Li2WO4包覆层显著的提升了材料的Li+传输效率,从而使得在大电流密度下材料的循环性能得到提升。综上所述,测试单个正极材料颗粒的关键材料性能参数,有助于我们深入理解材料性能变化的机理。

图2.(a)W-0和W-0.5样品的粉末电阻率(b)电子电导率(c)单粒子力测试(d)W-0(e)W-0.5样品单粒子力学测试前后的光学照片(f)W-0和(g)W-0.5在0.1-0.7 mV s-1下的CV曲线(h)扫描速度和峰值电流之间的关系(i)W-0的PITT测试(j)W-0.5的PITT测试(k)相应的Li+扩散系数

(2)深入研究倍率失效机制

为研究DIEA工程对材料中晶格氧释放以及过渡金属迁移的调控,进行了原位XRD、原位拉曼以及原位DEMS测试。原位XRD测试中,材料在高截止电压下晶胞参数变化缓慢,晶体结构稳定应变减缓。原位拉曼测试用以分析样品中的过渡金属迁移情况以及结构退化,改性样品中500 cm-1和618 cm-1处的特征峰变化较小,而原始样品中在650 cm-1处出现新的特征峰,表明材料由于过渡金属迁移产生了新的尖晶石相。原位DEMS测试则表明具有高熵表层的材料在高压下的气体释放明显抑制,表明其更加稳定的晶格氧骨架。进一步采用DFT计算,为晶格氧释放以及过渡金属迁移提供理论支撑,结果表明具有高熵表面的材料在高脱锂态仍能展现较高的氧空位形成能以及Mn迁移能垒,这与测试结果相互印证,表明材料高压下仍能表现出更加稳定的晶体结构。

图3.(a)W-0 在1 C(b)W-0.5在1 C下循环100周后的SEM横截面图像(c)W-0 在2 C(d)W-0.5在2 C下循环100周后的SEM横截面图像 (e)W-0在1 C(f)W-0.5在1 C (g)W-0在2 C(h)W-0.5在2 C下循环100周后的SEM横截面图像(i)W-0在 1 C (j) W-0.5 在 1 C (k) W-0 在2 C  (l) W-0.5 在 2 C下的GPA分析

(3)前瞻

本文开发了一种通用的六价金属阳离子诱导的三合一改性策略,通过增强高镍正极材料的化学稳定性和结构稳定性,来应对高镍材料在高倍率长循环间的应力累积。更重要的是,该策略不仅强化了材料表层的抗氧化性能,还深入揭示了高倍率下材料从表面到核心的渐进性结构变化。通过对不同充放电倍率下的失效机制进行系统研究,我们发现在高倍率循环中,高镍正极内部的应力传导与相变行为显著影响其整体性能。这一发现不仅为理解高倍率条件下的材料退化机理提供了全新视角,同时也为未来调控材料性能的设计策略提供了科学依据。

Enhancing Chemomechanical Stability and High-Rate Performance of Nickel-Rich Cathodes for Lithium-Ion Batteries through Three-in-One Modification

DOI:10.1016/j.ensm.2024.103893

  • 发表于:
  • 原文链接https://page.om.qq.com/page/ORdE5Vxci6KnfHVGl45R3iPg0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券