为什么ICA是真正的ECM

ICA(Intelligent component analysis/智能内容分析),将为企业提供一个丰富的我们在过去认为不可能的预测信息领域。

多年以前,医疗公司就如何管理,申报和提交药物开发信息给相关管路机构而操碎了心。为了申报药物研发审批备忘录,他们必须以一种一贯的方式提供有关临床试验,药理学观察,医生笔记,患者记录在内的所有细节给有关部门。

然而,这些信息以多种不同的格式管理储存,例如X光片,核磁共振图谱等。这就导致了不同格式的内容在存储,分析以至标准化方面存在巨大的困难。

图片来源于网络

为解决这种痛点,企业内容管理系统应运而生—— Enterprise Content Management (ECM)。

企业内容管理技术被寄期望于用一种统一的格式去代替所有不同格式的内容,从而实现对内容更加简便高效的管理和分发。

然而,它的固有缺点是它(信息系统)并不能理解它所存储和管理着的内容。任何描述性信息或分析结果都是由用户,或者,很多时候也是由通过摘录相关信息的工作流程添加进系统的。如果是医学图像文件,系统更希望以元数据或者DICOM格式对信息进行摘录。然而,以上的各种被系统摘录的信息格式都不是最终可信赖的分析结果;而且,它们是静态的存在,在大多数情况下,一旦被记录入系统,就会失去时效性。

ECM系统包含许多不同的应用功能,比如web内容管理系统,文档管理系统和图像管理系统。每个系统也可以有一个记录管理的方法或模块,但这些系统并不会主动整合内容来做内容分析。一些ECM供应商着眼于添加更多模块 - 也就是说,他们在通过加固系统 - 以解决传统ECM的一些缺点;但是,这些系统将受到原始应用程序架构的限制。

到了今天,信息内容逐渐向图片化,视频化过渡。你可以发现,仅仅着眼于手动添加的或者由系统生成的元信息已经远远不能够让你对所持有的数据做更加深入的了解。据估计,在所有被存储的信息中只由大约0.5%的信息会被用来生成可供系统学习分析的结果或数据。想一想,如果孩子只能拿出0.5%的他所接触到的信息去学习,他需要多长时间才能成长。

因此开发出一套和人类的学习认知体系类似的系统是十分有必要的。当孩子所有的感官被分别用来观察,聆听,品味和感受外界对象的时候,他们进步最快而且能汲取最多的知识。尽管计算机系统目前来看可能还做不到品尝或感受,但它能够做到“聆听”“观察”和“阅读”。因此,智能内容分析(ICA)是非常重要的,因为它让系统使用占比99.5%的未开发信息,并以最全面和最快的方式使用它。

我们以前没听过吗?Autonomy公司做出了旨在实现智能内容分析的Idol平台。总之,这是一个基于市场营销和公关的ICA解决方案。实际上,Idol平台从来都没有能力用与人类相同的方式处理这些信息,因为它并不具备(让这一切实现的)技术条件。所幸,随着GPU,TPU以及经过新型算法武装的专用学习处理器的发展,定制化的硬件在今天最终成为可能。

这些进步以及海量的由易于获得的位置坐标,云存储数据和服务数据所产生的信息使得像微软,亚马逊,Facebook和谷歌这样的公司能够验证和完善相关的方法去将语言和图片转换成各种含义和系统可解读的内容。

在2017年伊始,微软和谷歌曾对外声称Word文档将语音转文字的错误率是6.3%。然后在几个月内,它得到再次改善,降到5%以下。

图像识别和随后的描述性生成等技术还不是很先进,但是毫无疑问地这些技术应用拥有极大的改进空间并且注定会迎头赶上。以误码率的重要性为例,Google刚刚发布了翻译耳机,可以近乎实时地翻译40种语言。如果没有我刚才提到的硬件的技术进步,以上发生的这一切都是不可能的。这就是为什么我们可以在大体上认定Idol不是一种ICA的解决方案的原因。

图片来源于网络

这对你来说意味着什么?

也许你以为这一切都是你知道的,但是这将如何使你或你的企业受益呢?为了回答这个问题,我们来看一些例子:

汽车安全

我们已经看到了自动驾驶汽车,特斯拉等公司正在自主驾驶领域的发展和进步。这些系统已经使用了视频,传感器和图片,但他们不使用声音。未来的系统将能够识别出像汽车轮胎刹车的尖锐的声音,这可以在潜在交通事故发生前及时的提醒驾驶员;智能系统可以通过收集动物声音或噪音来区分它所看到的物品,并且会在几秒钟内知道它们是什么以及如何躲避它们。这种类型的ICA和学习并不遥远。

医疗诊断

为了高效的诊断病人,医生已经可以通过使用望闻问切甚至通过病人口头描述的感觉和内部扫描等信息作为诊断的参考内容。医生需要评估所有这些项目,以提供潜在原因的诊断用来确定治疗措施。随着ICA的进步,一个系统将能够持续不断地采用所有可用的方式反馈来监测病人的病情,然后将其录制并转化为可被机器学习和应用的语句和词汇。和汽车一样,这样的系统将给医生确诊提供一种快速的评估和建议的行动方案。

这将如何使企业用户受益?

如果你看了以上的这些例子,它们将如何使企业用户受益呢?最基本的好处是让这些企业用户能够使用他们所持有的99.5%的未开发信息中的一部分来学习,并发现并应对潜在的风险或提高回报。

然而,促成这一切发生的最大和最重要的进步是有关自动生成供机器学习的数据的技术的进步。另一个重大的进步是自然语言生成(NLG)。正是这个被用于将诸如图片,视频,音频等数据元素标准化成持续地信息流这一过程让旨在教机器用类似于人类建模的思考方式去学习的算法成为可能。

人类的大脑通过标准化的冲动,生物电和激素高效的调动与调控我的自身的诸多传感器,这是一项了不起的工作。就像人脑用图像来标准化单词,增强自己的联想和学习能力一样,ICA将为企业提供丰富的可用于产生过去被认为不可能的预测结果的信息领地。

原文链接:https://www.infoworld.com/article/3237988/analytics/why-ica-is-the-real-ecm.html

原文作者:Kevin Gidney

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏互联网数据官iCDO

如何衡量品牌活动的有效性?

译者:李晓艳 本文长度为1313字,预估阅读时间3分钟。 摘要:本文作者介绍了从线上品牌调查、查看“浏览率”两种途径衡量品牌活动的有效性。 在之前的文章(htt...

2695
来自专栏CDA数据分析师

TED-区块链将如何彻底改变经济

区块链将大大改变经济生活,区块链研究者Bettina Warburg论述了通过区块链将形成更加分散、透明、自主的交易系统。

713
来自专栏区块链中本聪

区块链上的人工智能

区块链是一个去中心化的分布式账本,在其上面有像比特币和以太坊这样的加密货币在运行着;区块链也许是下一代的互联网;区块链是一项信息技术;区块链是一个...

613
来自专栏BestSDK

科大讯飞:智能语音识别率高达98%,支持22种方言

回看2017,科大讯飞取得了哪些举世瞩目的突破成就?又在AI赋能营销领域实现了怎样的不朽成果?全方位展示+深度解读关于智能营销,那些你不知道的事…… ? 201...

4066
来自专栏人工智能

未来的岁月,AI来抢“饭碗”,媒体内容将不费力地自创作、自组织和全球扩展

全球内容创作、管理、翻译和分发专业公司SDL发表其预测报告“内容五个未来状态”——一系列2018年品牌须关注的颠覆性内容趋势。由于内容位于每个客户之旅的核心,S...

1807
来自专栏新智元

【报告】2016-2020年Edtech创业趋势预测(80页完整版)

【新智元导读】教育科技(EdTech)行业投资火热,2015年,中国教育投资总额已经超过美国居世界第一,近四年复合增长率达32%。人工智能等前沿科技对严重依赖技...

3335
来自专栏罗超频道

渐进式技术改良,百度豪赌智能搜索

今年以来百度产品动作频频,成熟的网页搜索在先后推出极简首页、知识图谱等功能之后,昨天又进行大版本升级:上线极速智能搜索,在用户一边输入时一边呈现结果并可进行个...

3117
来自专栏大数据文摘

谁拥有数据的决策权?首席执行官还是首席信息官?

1924
来自专栏大数据文摘

2015全局数据白皮书:我们需要什么样更“好”的数据?

1482
来自专栏钱塘大数据

中国信通院发布《全球人工智能产业地图》

《全球人工智能产业地图》由中国信通院信息化与工业化融合研究所和数据研究中心联合绘制,对全球人工智能产业进行了系统分析,从产业结构、产业分布、企业分布等多角度进...

3559

扫码关注云+社区