【机器学习】“机器深度学习”的未来:读懂人类的情感

“机器学习”的概念自上世纪50年代出来以来就备受科技界的关注,而近年来“深度学习”逐渐成为机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,模仿人脑的机制来识别图像、声音和文本等数据。

美国科技媒体《连线》杂志网络版日前发文对“机器深度学习”技术的最新进展进行了总结。以下是文章的主要内容。

在QuocLe的眼中,世界都是由一系列的数字组成的。“一张数码照片实际上都是数字,”他说道,“如果将人们所说的话拆分成单独的音素,那么它们同样可以被编译成数字。”如果按照QuocLe的说法,就可以将这些数字输入到机器之中,机器能够读懂照片和人们所说的话,比如Facebook能够识别出你的脸,谷歌则能够听懂你所说的话。

不过QuocLe想要走得更远,他希望能够研究出一种能将整个句子、整个段落以及各种类型的自然语言转译成数字或其它载体的技术,借助这项技术,计算机科学家就可以让机器也能够获得人们看到和听到的信息。同时,QuocLe还在探索如何让机器理解人们的观点和情绪的方法。

尽管此类技术目前尚处于起步阶段,未来还有很长的路要走,但相对于同行而言,QuocLe要拥有更多供其调配的资源。QuocLe是“谷歌大脑”(GoogleBrain)项目的一员,该项目主要从事“机器深度学习”领域的研究,这是人工智能的一种形式,主要用机器来模拟人脑进行数据处理。

现年32岁的QuocLe一直在谷歌从事语音识别方面的工作,比如Android系统的语音识别功能以及为网络图片自动添加标签等,这两项工作都需要“深度学习”技术的支持。

除了谷歌之外,Facebook和微软等互联网巨头也都在使用“深度学习”方面的技术,同时百度公司最近也曾在公开场合谈及利用这项技术来为客户提供更为精确的广告推送服务。不过QuocLe希望将该技术推向更为广阔的领域,包括对自然语言理解、机器人以及网络搜索等。

QuocLe最近开发出了一项“深度学习”技术,能够鉴别出网络上不同的词汇之间是如何关联的,谷歌则在自己的“知识图谱”中融入这项技术,从而帮助其对搜索结果进行知识系统化,让每一个关键词都能获得完整的知识体系。

曾经的困扰

QuocLe上世纪90年代首次接触到人工智能,但是确实让他感到烦恼不已,因为当时的机器学习系统非常依赖工程师的手工输入,尽管机器在一定程度上也具备理解能力,但是却需要比较繁琐的操作才能完成。比如当时的机器在照片没有添加标签的情况下就无法对其进行识别。

“我们对大量无标签的数据进行了学习研究,”QuocLe说道,他曾与“谷歌大脑”项目的创始人之一吴恩达(AndrewNg)在斯坦福大学共同研究人工智能,“如果未来我们能够找到一种可行的算法来让机器对无标签的数据进行识别,那将有可能会改变整个计算行业,毕竟现在网络的大部分数据(如Facebook、Twitter和谷歌)都是没有标签的。”

这也正是“深度学习”技术未来想要实现的目标。利用数万台电脑通过软件模拟人脑中的神经元网络,从而让机器获得与人类相似的学习能力,比如在某些情况下机器能够在无需对数据添加标签的情况下实现自动学习。

谷歌的猫脸识别其实就是“深度学习”技术的典型案例,只不过在经过了长达三年的研发之后,这个项目仍然没能获得大的进展。与此同时,大部分商业深度学习系统目前仍然比较依赖人工监控。“尽管猫脸识别技术的实用性很低,”吴恩达说道,“但是我认为这项技术代表是深度学习未来发展的一个方向。”

语言的挑战

“深度学习”技术需要面临的另一个挑战是对自然语言的识别。人类的语言中包含大量的微妙信息,迄今为止科学界还未能找到识别这些微妙信息的方法。比如一个相同的词汇,在不同的语境或语气下都会有不同的意思,目前大部分人工智能系统都无法区分这些信息。“机器非常善于处理数据,但是却无法应付语言符号,”QuocLe介绍说,“因为语言是一种具备高度象征意义的东西。”

对语言进行识别的关键是找到将符号转译成数字的方式。“目前我们还没有找到将语言概念转变成机器能够处理的数学结构的方法,”QuocLe说道,“不过在与Word2Vec工具的帮助下,我们在这方面也取得了一定进展。希望未来我们的机器能够自动识别发布在网络上的海量信息。”

“人们未来是不可能随时随地监督机器的学习的,”与QuocLe一起在斯坦福大学攻读博士学位的理查德索切(RichardSocher)说道,“我们希望未来能够将监督学习和非监督学习结合起来,这样机器就能实现许多目前难以想象的事情。”

QuocLe最近联合谷歌的几位同事发表了一篇关于在深度神经网络研究中使用机器翻译的文章,其中谈到了对“回归神经网络”的利用,据了解这可能是目前语言识别领域最为先进的技术。

更强大的“谷歌大脑”

QuocLe在文章中表示,他们所发现的新方法要优于其它机器翻译算法,不过这也仅仅是“深度学习”的一个应用而已,未来“深度学习”技术还将会用于网络上的问题答疑、自动说明以及情感分析等等。

为了充分利用这些先进的算法,谷歌将不得扩充自己的“机器神经网络”规模,而不是局限在图像和语音的识别领域。“深度学习”概念的奠基人、目前供职于谷歌的杰夫·韩丁(GeoffHinton)曾在介绍“谷歌大脑”项目时表示:“就像是鸽子的大脑一样,虽然它拥有良好的视力,但是任何人都不会与一只鸽子进行对话。”

实际上,即便是脑容量相当小的鸽子,其大脑的计算能力也能够轻松超越目前世界上最为先进的“机器神经网络”(包括“谷歌大脑”),而在韩丁加盟谷歌之后,更是宣称未来要帮助谷歌打造全球最大的“机器神经网络”来对“深度学习”进行更加全面的研究。

原文发布于微信公众号 - 数据科学与人工智能(DS_AI_shujuren)

原文发表时间:2015-10-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

业界 | Kaggle问卷主成分分析,16000万数据从业者面临这5类挑战

16260
来自专栏about云

什么是机器学习技术?

问题导读 1.什么是机器学习? 2.机器学习可以来做什么? 3.机器学习技术可以被应用于哪三种不同方式? 这篇博客文章由微软研究院的杰出科学家J...

298100
来自专栏机器之心

业界 | 快手科技李岩:多模态技术在产业界的应用与未来展望

李岩在演讲中表示,多模态技术有两大应用方向,一是会改变人机交互的方式,二是将使信息分发更加高效;视频本身就是一个多模态的问题,而快手则拥有海量的多模态数据,多模...

13330
来自专栏机器之心

业界 | 快手AI技术副总裁郑文:为什么说AI是短视频平台的核心能力

郑文是美国斯坦福计算机系博士,研究方向主要集中在计算机图形学和电影特效方面,毕业之后在美国从事机器学习和计算机视觉相关研究,2016 年回国后加盟快手,现任快手...

15830
来自专栏人工智能头条

AAAI主席Rao Kambhampati:破解人机共存的规划技术挑战(PPT下载)

14230
来自专栏人工智能头条

TalkingData张夏天:不要专职算法工程师,要数据科学家

22620
来自专栏PPV课数据科学社区

浅谈数据挖掘与数据分析?

浅谈数据分析与数据挖掘?   数据分析和数据挖掘都可以做为“玩数据”的方法论,两者有很多的共性,也有显著的差异。 ?   从分析的目的来看,数据分析一般是对历史...

488110
来自专栏灯塔大数据

荐读|电信大数据关键技术挑战

电信大数据来源于运营商通信网络平台的BSS和OSS,沉淀了海量用户7个维度的信息:1维用户真实ID、1维行为数据、1维社交数据、1维时间数据和3维空间数据。运营...

40070
来自专栏机器之心

OpenAI联合DeepMind发布全新研究:根据人类反馈进行强化学习

选自DeepMind 作者:Shane Legg等 机器之心编译 参与:吴攀、黄小天、李亚洲 DeepMind 和 OpenAI 是现在人工智能研究界最重要的两...

29280
来自专栏AI科技评论

现场 | 英特尔中国研究院认知计算实验室主任陈玉荣博士:如何“享用”视觉识别技术的低廉化大潮

英特尔中国研究院认知计算实验室: 致力于视觉认知和机器学习前沿领域的科技创新,开发视觉内容理解和视觉内容创建的领先技术,从而在英特尔平台上实现视觉数据的智能处理...

29490

扫码关注云+社区

领取腾讯云代金券