观点 | 人工智能搁浅了?听一听纽约大学教授Gary Marcus怎么说

选自New York Times

作者:Gray Marcus

机器之心编译

参与:路雪、黄小天

近日,Gary Marcus 在纽约时报上发表了一篇题为《Artificial Intelligence Is Stuck. Here's How to Move It Forward.》的文章,讨论了人工智能,尤其是深度学习目前存在的弊端,比如鲁棒性差,没有主动学习能力。他给出的解决方案是拥抱人工智能新范式,「自上而下」与「自下而上」的知识两手抓;并坦言,相比于学界的小型实验室和业界的公司实验室,他更欣赏欧洲核子研究中心(CERN)。他还认为,人工智能的发展应当裨益全人类,而不是沦落为少数权贵的囊中之物。

近年来人工智能被大肆鼓吹,但事实上它还有漫长的路要走。确实,人工智能现在可以玩转很多棋牌游戏,从国际象棋、围棋到危险边缘(Jeopardy)、德州扑克,但是在实际应用中,人工智能却举步维艰。机器人会在开门时摔倒,无人驾驶原型车依然需要人为干预,也从来没有一台机器的阅读能力达到六年级小学生的水平,更不要说大学生。自我学习被认为是真正人工智能的标志,但目前来看这还只是一个梦想。

即使时下流行的深度学习技术也存在弊端。比如,一些最好的图像识别系统,可成功区分不同的犬种,但它还是会犯重大错误,如把带有黄、黑色条纹的物体错误识别为校车。这样的系统既无法理解当下复杂的视觉场景(谁在追逐谁,以及为什么),也无法遵循简单的指示(阅读一个故事并作总结)。

尽管人工智能领域的小进步层出不穷,但距离人类认知水平的鲁棒性和灵活性还是很遥远。不久前,我和三岁的女儿一起坐在咖啡厅,她自发地意识到一种爬下椅子的新方法:后退,并从椅子后背和坐垫之间的空隙滑下去。我女儿之前从未见过其他人这样做,她独自发现了这种新方法,并且没有借助试错和海量的标注数据。

大概,我女儿借助了身体如何运动的内在机制,以及一个隐含的物理学理论:一个复杂的物体如何从另一个物体的空隙中穿过。这种能力可以挑战目前所有的机器人。人工智能是被动的容器,费力地从海量数据中挖掘出统计关联性;而人类则像是主动学习的「引擎」,可以发现事物的运作原理。

为了让计算机像人类一样思考,我们需要一个人工智能新范式,兼顾「自上而下」与「自下而上」的知识。自下而上的知识是直接从场景中获取的原始信息,比如光线落在人类视网膜上的模式。自上而下的知识则是世界的认知模型及其工作原理。

深度学习非常擅长自下而上的知识,比如从黄金猎犬和拉布拉多犬中识别出黄金猎犬对应的像素模式。但是当面对自上而下的知识时,深度学习就无用武之地了。如果我女儿在一碗水中看到了自己的倒影,她会知道这个图像是假的,她并没有在碗里。但是,对于一个深度学习系统来说,倒影和真实的事物之间没有区别,因为系统缺乏对世界及其运行原理的认知。整合此类知识可能是 AI 将要面对的下一个难题,也是实施更大项目的先决条件,比如使用 AI 推进机器和科学理解。

但是,恐怕现有的两种资助 AI 研究的方式(学界的小型研究实验室和业界的大型实验室)都很难成功。我是作为两种模式都经历过的人发表这个观点的,我曾以学界研究者和创业公司(Geometric Intelligence,后被 Uber 收购)创始人的身份从事 AI 研究。

学界实验室太小了。拿自动机器阅读来说,它是构建真正智能系统的关键,但是对于任意一个大学实验室来说,要解决这个问题需要大量单独的组件。全面的解决方案包括自然语言处理的发展(如将句子解析成单词和词组)、知识表示(如将句子内容和其他来源的知识融合)和推断(重建文本暗含但未写出的内容)领域的进步。每一个问题对单独的大学实验室来说都需要花费大量时间。

公司实验室,如谷歌和 Facebook 的实验室,拥有大量资源来解决大问题,但是从季报和利润来看,这些公司倾向于小问题,如优化广告位或自动筛查不良内容视频。这样的研究当然没有问题,但不太可能带来大的突破。即使是谷歌翻译,它通过挖掘具备统计关联性的跨语言句子,从而得到可用的翻译结果,并使这一策略得到推广,但谷歌翻译仍然无法理解它翻译的每个词。

我很羡慕研究高能物理学的同僚,尤其是他们能够在欧洲核子研究中心(CERN,大型国际合作组织)与数千名科学家一起工作,获得数十亿美元的资金支持。他们追求远大的、严格界定的项目(如使用大型强子对撞机发现希格斯玻色子),而且和整个世界分享他们的研究成果,而不是仅限制在单个国家或公司。但是 AI 领域最大的「开放」组织 OpenAI(拥有约 50 名雇员且由伊隆·马斯克赞助)与之相比则显得很小。

国际力量团结起来,致力于研究教机器学习阅读能够真正地改变世界,使之变得更好。AI 对公众越有益,而不是成为少数权贵的财产,这样 AI 才能对世界产生更好、更广泛的影响。

原文链接:https://www.nytimes.com/2017/07/29/opinion/sunday/artificial-intelligence-is-stuck-heres-how-to-move-it-forward.html?mcubz=0&mtrref=t.co&assetType=opinion

本文为机器之心编译,转载请联系本公众号获得授权。

原文发布于微信公众号 - 机器之心(almosthuman2014)

原文发表时间:2017-07-31

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

我们需要什么样的智能助理?

19120
来自专栏腾讯开源的专栏

道器相融,由 Angel 谈一个优秀机器学习平台的自我修养(下)

随着人工智能时代来临,大数据平台发生了新的变化,也提出了更高的要求。Spark等大数据平台多是为通用数据处理而设计的,并非专用于机器学习任务,企业该如何更好地利...

83710
来自专栏华章科技

黄骞:我们是如何在一张地图上表现86万个数据的

作为一名数据工作者,我每天会接触到很多的数据可视化成果,美好的可视化作品简洁明快炫酷非常,让人心情舒畅。

9110
来自专栏leland的专栏

游戏与人工智能

在人工智能的发展上的道路上,游戏到底扮演着一个怎样的角色?也许接下来五分钟的阅读(多图预警),会让你得到一个较为清晰的答案。

428240
来自专栏专知

我是如何失败的 —— Ian Goodfellow 访谈(PhD’14, Computer Science)

19250
来自专栏大数据文摘

TED视频 | 混搭人文主义,我找到了数据可视化的新玩法

26260
来自专栏ThoughtWorks

TW洞见〡Inception的核心逻辑

文章作者来自ThoughtWorks:熊子川,图片来自网络。 Inception是ThoughtWorks多年以来使用的启动软件设计和交付项目的方法,通过3天...

34970
来自专栏Data Analysis & Viz

最全知乎专栏合集:编程、python、爬虫、数据分析、挖掘、ML、NLP、DL...

上一篇文章《爬取11088个知乎专栏,打破发现壁垒》 里提到,知乎官方没有搜素专栏的功能,于是我通过爬取几十万用户个人主页所专注的专栏从而获取到11088个知乎...

63820
来自专栏ATYUN订阅号

赫尔辛基大学AI基础教程:AI的社会影响(6.2节)

在本课程一开始,我们简要地讨论了人工智能在当今和未来社会中的价值,但当时我们讨论的还很浅,因为我们没有引入足够的技术概念和方法来具体讨论。

12030
来自专栏AI科技评论

学界 | 20年后的机器人不如猫?Google的AI专家和Amazon的VP打了一个赌

“很多人预测在20年内出现人类水平的人工智能,我认为这太乐观了。我愿意打一个赌,赌20年内,我们的技术不足以制造出一个感觉运动控制能达到家猫水准的机器人。” 想...

29370

扫码关注云+社区

领取腾讯云代金券