前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >读书笔记: 博弈论导论 - 03 - 完整信息的静态博弈 预备知识

读书笔记: 博弈论导论 - 03 - 完整信息的静态博弈 预备知识

作者头像
绿巨人
发布2018-05-18 11:51:20
6640
发布2018-05-18 11:51:20
举报
文章被收录于专栏:绿巨人专栏

读书笔记: 博弈论导论 - 03 - 完整信息的静态博弈 预备知识

预备知识

本文是Game Theory An Introduction (by Steven Tadelis) 的学习笔记。

知识点

  • 静态完全信息博弈(static games of complete information) 第一步:每个玩家同时并且独立的选择一个行动,(每个玩家都不知道别人的选择情况) 第二步:根据所有玩家选择的行动,收益被分布到每个玩家。
  • 完全信息博弈(Games of Complete Information) 一个完全信息博弈要求:下面四部分是博弈中所有玩家的公共知识。
  1. 所有玩家的所有可能的行动
  2. 所有可能的结果
  3. 所有玩家的各种行动组合产生什么样的结果
  4. 每个玩家对结果的倾向
  • 公共知识(common knowledge) 一个公共知识是一个事件E,并且 (1) 每个人都知道, (2) 每个人都知道每个人都知道,像这样无限循环下去。

普通形式博弈

  • 普通形式博弈(normal-form game)有下面三个特征:
  1. 一组玩家
  2. 每个玩家有一套行动
  3. 一套收益函数:每个玩家的行动组合都有一个收益值。
  • 策略(strategy) 打算完成一个特定目标的行动计划。
  • 纯策略(pure strategy) 玩家i的一个纯策略是一个确定性的(意味着没有随机性)行动计划。 S_i用来表示玩家i的所有纯策略。
  • 所有玩家的纯策略组合(a profile of pure strategies) s = (s_i, s_2, \cdots, s_n), s_i \in S_i \text{ for all } i = 1,2,\cdots, n 代表在一个博弈中所有n的玩家的一组选择的纯策略组合。
  • 普通形式博弈(normal-form game)的数学表达
  1. 一个有限的玩家集合, N = {1, 2, \cdots, n}
  2. 每个玩家的纯策略集合的组合, {S_1, S_2, \cdots, S_n}
  3. 一套收益函数, {v_1, v_2, \cdots, v_n},对于每个玩家,每一种所有玩家选择的策略组合,都有一个收益值。 $v_i: S_1 \times S_2 \times \cdots \times S_n \text{ for each } i \in N
  • 普通形式博弈(normal-form game)的数学表达例子:囚徒困境(The Prisoner's Dilemma) Players:N = {1,2} Strategy sets: S_i = {M, F} \ for \ i \in N Payoffs: Let v_i(s_1, s_2) be the payoff to player i if player 1 choose s_1 and player 2 chooses s_2 We can then write payoff are v_1(M, M) = v_2(M, M) = -2 v_1(F, F) = v_2(F, F) = -4 v_1(F, M) = v_2(F, M) = -5 v_1(M, F) = v_2(M, F) = -1 M: mum 沉默; F:fink 告密

2人有限博弈的矩阵表达

  • 例子:囚徒困境(The Prisoner's Dilemma)

Player 2

M

F

Player 1

M

-2, -2

-5, -1

F

-1, -5

-4, -4

方案设想(solution concept)

  • 方案设想(solution concept) 方案设想(solution concept)是一个分析博弈的方法,用于限定出所有可能的合理结果。 一个方案设想将导致一个预言或者处方。
  • 均衡(equilibrium) 任何一种可以产生方案设想预言的策略组合。 也就是可以任何一种导致合理结果的策略组合。

如果用因果关系来说明,均衡是(可以导致合理结果的)因,方案设想是(可以导致合理结果的)分析方法,因果关系的公共知识。 从权衡方面来说:方案设想就是一个权衡。均衡的权衡的结果。

  • 方案设想的假设条件
  1. 玩家是理性的
  2. 玩家是智力的
  3. 公共知识:“玩家是理性的”和“玩家是智力的”是所有玩家的公共知识。
  4. 自我执行:方案设想的均衡必须是自我执行的。(每个玩家都会采用一种均衡结果)
  • 方案设想的评估
  1. 存在性(Existence: How often does it apply?)
  2. 唯一性(Uniqueness: How much does it restrict behavior?)
  3. 不变性(Invariance: How sensitive is it to small changes?)
  • 帕累托优势(pareto dominate) 策略组合s帕累托优势于策略组合s',其前提条件:对于每个玩家,在策略组合s中的收益都大于等于在策略组合s‘中的收益,并且至少有一个玩家,在策略组合s中的收益大于在策略组合s‘中的收益。

v_i(s) \geq v_i(s'), \forall i \in N \\ \ v_i(s) > v_i(s'), \exists i \in N

参照

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-12-20 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 读书笔记: 博弈论导论 - 03 - 完整信息的静态博弈 预备知识
    • 预备知识
      • 知识点
        • 普通形式博弈
          • 2人有限博弈的矩阵表达
            • 方案设想(solution concept)
              • 参照
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档