数据蒋堂 | 人工智能中的“人工”

自从AlphaGo赢了之后,人工智能就变得非常热门了。不过,大家在关注“智能”时,却很少把注意力放在“人工”上,似乎感觉上了人工智能之后,一切都能自动化了。其实,这份智能的背后有着大量的“人工”,还有相当多不能自动化的事情。

这里的"人工"主要体现在两个方面:

1. 数据准备

现代的人工智能技术,或者说机器学习,其基本方法和N多年前的数据挖掘并没有什么太大的不同,也还是将大量数据喂给计算机用于训练模型,模型生成之后就可以用于自动化处理,看起来就像有了智能。

然而,用于实际业务的机器学习项目,并不像AlphaGo那样可以自己生成数据来训练(其实AlphaGo的前期版本也用了大量现存的棋谱),必须使用实际发生过的数据才能训练模型。不同的数据训练出来的模型完全不同,数据的质量严重影响模型的效果。

但是,实际的数据五花八门,散落在各个应用系统中。想把它们整理出来供算法使用,并不是一件容易的事。机器学习需要的常常是比较规整的宽表数据,这还需要把各个应用系统中的关联数据拼接到一起;而各系统的数据编码规则可能不一样,这还需要先统一化;有些数据还是原始的文本(日志)形式,还需要事先从中抽取出结构化的信息;更不要说还有从互联网上扒出来的数据。

有经验的程序员都知道,一个数据挖掘项目中,用于数据准备的时间大约会占到70%-80%,也就是说,绝大多数工作量都花在训练模型之前。

这其实就是我们常说的ETL工作了,这些事看起来没什么技术含量,似乎是个程序员就能做,人们也就不很关心,但成本却高得要命。

2. 数据科学家

ETL整理好的数据,也仍然不是那么好用的。还需要数据科学家来进行进一步处理才能进入建模环节。比如有些数据有缺失的,那么需要有某种办法来补缺;数据的偏度太大,而很多统计学方法要假定数据分布要尽量满足正态分布,这就需要先做一遍纠偏;还需要根据业务情况生成衍生变量(比如从日期生成星期、节假日等)。这些工作虽然也是建模前准备工作,但需要较专业的统计学知识,我们一般不把它算作为ETL的范围。

机器学习的建模算法有好几十种,各种算法都有各自的适用范围,还有大量的参数需要调节。如果用错了模型或调错了参数,那就会得到非常不智能的结果了。这时候又需要数据科学家们不断地尝试,计算并考察数据特征,选用合理的模型和参数,根据结果再反复迭代,经常较漫长的时间才能建一个实用的模型出来,短则二三周、长则二三月。

不过,近年来也出现一些完全自动迭代的手段(主要是神经网络),但计算时间很长,而且在许多领域(如金融风控)的效果并不太好,更有效的仍然是由数据科学家主导的方案,然而数据科学家们又少又贵。

是不是觉得现在的技术还有点low?人工智能的背后原来一点也不智能!

专栏作者简介

润乾软件创始人、首席科学家

清华大学计算机硕士,著有《非线性报表模型原理》等,1989年,中国首个国际奥林匹克数学竞赛团体冠军成员,个人金牌;2000年,创立润乾公司;2004年,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准;2014年,经过7年开发,润乾软件发布不依赖关系代数模型的计算引擎——集算器,有效地提高了复杂结构化大数据计算的开发和运算效率;2015年,润乾软件被福布斯中文网站评为“2015福布斯中国非上市潜力企业100强”;2016年,荣获中国电子信息产业发展研究院评选的“2016年中国软件和信息服务业十大领军人物”;2017年, 自主创新研发新一代的数据仓库、云数据库等产品即将面世。

数据蒋堂

《数据蒋堂》的作者蒋步星,从事信息系统建设和数据处理长达20多年的时间。他丰富的工程经验与深厚的理论功底相互融合、创新思想与传统观念的相互碰撞,虚拟与现实的相互交织,产生出了一篇篇的沥血之作。此连载的内容涉及从数据呈现、采集到加工计算再到存储以及挖掘等各个方面。大可观数据世界之远景、小可看技术疑难之细节。针对数据领域一些技术难点,站在研发人员的角度从浅入深,进行全方位、360度无死角深度剖析;对于一些业内观点,站在技术人员角度阐述自己的思考和理解。蒋步星还会对大数据的发展,站在业内专家角度给予预测和推断。静下心来认真研读你会发现,《数据蒋堂》的文章,有的会让用户避免重复前人走过的弯路,有的会让攻城狮面对扎心的难题茅塞顿开,有的会为初入行业的读者提供一把开启数据世界的钥匙,有的甚至会让业内专家大跌眼镜,产生思想交锋。

原文发布于微信公众号 - 数据派THU(DatapiTHU)

原文发表时间:2018-04-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏IT派

麻省博士的机器学习经验干货分享

我的一个朋友最近正要开始人工智能的研究,他问及我在 AI 领域近两年的研究中有哪些经验教训。本文就将介绍这两年来我所学到的经验。其内容涵盖日常生活到 AI 领域...

581
来自专栏CDA数据分析师

如何成为大神级数据科学家 | Kaggle Grandmaster是怎样炼成的

Vladimir I. Iglovikov 是一名 Kaggle 顶级大师(Grandmaster),曾获得过 Carvana 图像遮蔽挑战的冠军,以及 Dst...

1432
来自专栏新智元

【谷歌AI拜年】画出可爱小狗,祝您狗年笑口常开

新智元报道 来源:Quartz; arXiv 编辑:小七 【新智元导读】谷歌研究人员最近做了一项实验:给人们展示AI生成的图画,并收集那些使人类发笑的图...

33812
来自专栏数据猿

2017年十本必读的大数据&人工智能领域书籍,你都读过吗?

【数据猿导读】年关将至,回顾2017,小编记得自己曾在年初的时候给自己定下一个小目标——就是读30本书。然而随着春节的临近,小目标却成了遥不可及的梦。不知道在过...

71813
来自专栏机器之心

想要入坑机器学习?这是MIT在读博士的AI心得

选自mit.edu 作者:Tom Silver 机器之心编译 随着人工智能技术的火热,越来越多的年轻学者正准备投身其中,开启自己的研究之路。和所有其他学科一样,...

2756
来自专栏人工智能快报

深度学习可听到机器故障信号

人们绝不想开车开到在路上出故障了才想起要日常保养,但预防性维护检查或定期维护检查经常发现不了可能会出现的问题。一家初创公司提出了更好的办法:利用人工智能去听车辆...

3756
来自专栏机器学习算法与Python学习

一份MIT博士的学习心得,送你入坑机器学习?(可下载PDF)

1366
来自专栏机器之心

Kaggle Grandmaster是怎样炼成的

最近,Vladimir 分享了自己成为 Kaggle 高手的经验。目前,Kaggle 注册用户数量已超 100 万,其中只有 124 人拥有 Grandmast...

983
来自专栏大数据文摘

为何机器学习识别声音还做不到像识别图片那么容易?

2454
来自专栏PPV课数据科学社区

TED演讲 | 盲目信仰大数据的时代必须结束

编者按:这几天看到某公号转发的一篇文章《大数据将“误导”产业发展》,标题震撼但内容苍白。同样是讨论大数据不完美的一面,国外学者则提供了更丰富的案例。数据科学家凯...

3708

扫码关注云+社区