转行数据分析的亲身经历

快两周没更新了,先跟大家说一下抱歉。最近生活上确实有点忙,不过后续将恢复正常。今天和大家聊一个非技术性的话题:转行。全篇无代码,但是我想对于这个话题,很多朋友都非常感兴趣,毕竟工作伴随着我们的一生,也是主要的收入来源,谁不想找一份高薪又有前景的工作呢?

是否要转行?

有些朋友对于是否该转行一直抱有迟疑态度,转行会不会有风险啊,转行以后万一后悔了怎么办啊,转行是不是要重新学啊,等等一系列的问题。这些问题大多数人都想过,博主也想过。毕竟工作是人生大事,转行当然也需要万分的谨慎。但是,一切事物都是有风险的,谁又能够预测未来怎么样呢?有时候人是需要一些果断的(不是冲动),但是需要自己想清楚,想好了就不犹豫。下面,博主结合自身,谈一谈要自己转行的几点考虑吧,供大家参考。

  • 现所处行业的未来发展 分析现在所在行业在未来10或者20年里是否有很好的发展前景,说实话这个是不好判断的,但就目前而言,传统制造等行业一直处于萎靡状态,而互联网和金融行业是比较热门的领域。但这些都是见仁见智吧,每个行业做到极致都会有不错的发展,每个人的理解也不一样,但是博主选择了互联网金融行业。
  • 现所在公司的发展状况 一个公司的发展好坏可以直接从领导CEO身上反映出来。领导是否有长远眼光,有管理能力,以及领导是否认真干事,会直接影响公司未来发展。博主所在公司领导层不断更换,并且内部管理非常差,不重视技术水平,工作效率巨低,所以导致一直在走下坡路,这种情况就没理由呆下去了,毕竟要考虑个人的发展。当然,很多小伙伴本来的工作可能就很好,那就要权衡一下利弊了,看你是否真的热爱这个行业。
  • 现所在公司的学习环境 对于职场菜鸟而言,选择一个公司其实是在选择一个好的学习环境。如果有机会去一个好的团队即使薪水低,那也是值得的,因为你锻炼的是学习能力,有了这种能力,你才会有更高的价值。当然,就目前而言,如果你觉得现在的公司已经没有什么可以让你学习的了,或者说遇到了瓶颈,那我觉得也可以考虑换换环境了。
  • 自己的生活需求 对于很低的薪水无法满足生活需求,那么这时候迫于生存也只能考虑转行。各种房贷车贷款的压力如此之大,通过转行增加收入也是一个有效解决问题的途径,但也是需要结合其它考虑而慎重选择。
  • 兴趣爱好 是否对转行的行业感兴趣。兴趣是最好的老师,如果自己本身对这份职业不感兴趣,仅仅是因为薪水等一些外部因素而转行,那么可能也不会太发展的太久远。

基于以上问题,博主进行了认真的思考并最终做出了转行的决定,因为对于我而言,每个问题都说的很通。当然这里绝非误导大家转行,只是给大家多提供一个参考

我的转行经历

博主从开公众号起前2个月开始接触Python语言,然后接触到了数据方面的技术,包括爬虫数据分析数据挖掘机器学习等,一直到现在仍然在坚持自学,我相信只要坚持结果总不会太差。直至今日,我可以说自己算是入门了,但需要学的东西还有很多。虽然这个过程比较艰辛(白天上班,晚上学习),但是由于兴趣的激励,也并未感觉太累,反而觉得很有成就感。

前一阵子,博主觉得自己可以尝试着找找这方面的工作了,于是开始在网上投递简历。很多网投的小伙伴肯定有过类似的经历,那就是石沉大海(其实是我太菜)。你会发现投递的几十份简历一个回应的都没有,于是在这个过程中开始对自己有了一些怀疑,尤其是对于像博主一样的转行求职者们,因为相比于科班出身的竞争者,我们没有太多优势。在这种情况下压力是很大的,曾经想过裸辞,但这是很不明智的。但没有办法,既然踏上了这条路,就必须坚持下去。好在目前数据分析,数据挖掘这些岗位的市场需求量很大,所以机会还是很多的。

十份不行,就投二十份,二十份不行就投三十份(当然在这个过程中是需要不断反思修改简历,并同时不断学习巩固,不然还是徒劳)。还有,一定要寻找身边的一切资源争取内推机会,内推面试的成功率还是蛮大的。慢慢的,开始有公司邀请面试了,虽然不是BAT,但是都是规模还算比较大的公司。

博主在过去的两周里一共面了5家公司,数量不多,岗位是数据分析/数据挖掘(根据招聘职位而定),其中3家给了offer。其实,这对于一个从零学起转行的求职者来说,结果我还是非常满意的,同时也给自己增加了一些信心。下面介绍一下面试公司的概况以及面试结果。

声明:这是我的个人经历,只供借鉴参考,并非适用于所有人。

面试结果

博主这里只列出其中三个给offer的公司。

面试公司一(offer)

  • 规模:上市公司(互金)
  • 岗位:数据分析师
  • 月薪:13K

面试公司二(offer)

  • 规模:上市公司(地产商)
  • 岗位:数据产品经理
  • 月薪:15K

面试公司三(offer)

  • 规模:初创公司(移动APP)
  • 岗位:数据挖掘
  • 月薪:20K

面试总结

总的来说,所有面试的经过还算顺利,但博主每一次面试后都发现了自己的许多不足的地方,下面总结一下。

  • 面试预约 接到的大多数电话面试都是下午快下班的时候,如果公司对你感兴趣,会问你明天是否愿意来面试(记得给HR回邮件)。博主每次都爽快的答应了第二天面试,但这其实并不一定太好,因为自己根本没有太多时间来准备。如果你特别中意这家公司,我认为最好还是准备充分再去面试效果会更好。我自己一般会留一天时间来进行面试前的准备。
  • 面试准备 利用面试前的时间来仔细研究一下这个公司的发展状况,组织架构,运营模式以及岗位的需求,最好能够在面试公司的业务或者技术上提出一些好的建议。技术细节上可准备的东西很多,这些更多在于平时的积累。这时候就没必要再去研究具体的技术细节难点了,而应该把控整体,我一般会把写在简历上的内容,比如项目经历等都过一遍(需要自己真实的做过才行),以免被问到细节问题尴尬。
  • 谈话技巧 可以说这部分也占了很大的权重,如果你可以侃侃而谈,和面试官聊的很high,那基本也就成了。我认为最重要的就是不紧张,保持常态,即使被问道了不会的内容也别慌,虚心请教面试官,一来可以让他感觉到你的学习热情,二来会让面试官感到很有面儿。第二个就是观察,可以通过观察面试官的表情来判断面试官是否满意你的回答或提问,然后及时改变回答策略。其中一个面试,HR英语特别好,博主硬是用英语陪她聊了10多分钟,这也让HR很满意(当然前提是你的英语水平也不错)。第三个是多提问题,与面试官的互动是非常关键的,如果面试官说到一个点上恰巧你能够紧接着很好的提问,那么整个谈话的气氛就活跃起来了,面试官会认为与你想法很契合(博主拿下了三个面试官的微信)。
  • 技术内容 几个面试中多数面试官都会针对项目经历仔细提问,问的很细,目的在于考察自己是否真实做过项目,认真思考过问题。当然也会问道一些细节的知识点,有很多基础的问题博主并没有回答的很好,这部分还需加强只能慢慢积累了。也问了一些其他问题,比如某个机器学习算法的优缺点,给你一个应用场景,你会倾向于选择哪个模型算法来解决,再比如给你一个场景,如何进行A/B测试等问题。对于数据分析而言,机器学习和爬虫等并不是必须,但是加分项。就像博主在简历中提到用爬虫爬取链家全网数据,然后做数据分析挖掘,没想到在几个面试中都有加分。关于这部分,博主会另开一篇详细介绍。

公司选择

对于最终公司的选择上肯定要考虑多方面的,待遇,发展,上升空间等。我的建议是选择公司要把眼光放长远,寻找一个好的团队,毕竟是转行,还是要以能学到东西为主。以下是几点选择公司的考虑:

  • 大公司 or 小公司 大公司一般规模比较大,每个岗位分得比较细,平台大,资源好,格局大。小公司一般岗位划分很粗糙,一般一个人要干所有的活儿,每个环节都能接触,进步成长速度会非常快。作为转行人员,我个人倾向于大公司,但是如果小公司有不错的机会也是可以考虑的。
  • 风险 or 稳定 一些初创公司的未来发展其实是很不明朗的,像很多P2P公司看起来不错,但是几个月倒闭的也比比皆是。这时候需要评估一下自己是否可以承受这种风险,高风险也就有高回报,所以很多初创公司提供的薪水才会比大公司高很多。可以尝试性的问问公司的现金流,融资情况,是否考虑上市等相关问题,来评估一下风险度。我个人倾向稳定发展的大公司,即使是初创公司最好在D轮融资之后是比较稳健靠谱的。
  • 团队专业水平 这个其实通过与面试官的谈话过程就能看出这个公司的技术水平怎么样,如果面试官的水平很一般,一些问题还没你清楚,那么你想想你来这能学到啥,可能薪水很高,但是你未来的价值却没有提升。
  • 薪水高 or 薪水低 傻子都知道薪水高好,但是还需要把握以上提到的一些原则性问题,不能因小失大。在符合自己基本标准的情况下当然薪水越高越好了。

这段时间里,博主深刻体会到转行的不易,所以把自己转行的经历给大家做了一个简单分享,希望对正在转行或者准备转行数据分析,数据挖掘方向的朋友们有所帮助。一句话,坚持就是胜利

下一篇博主会详细介绍一下转行过程中需要准备的内容和学习的重点,分享我的学习过程,以及面试中会问到的一些细节问题。

原文发布于微信公众号 - Python数据科学(Python_Spiderman)

原文发表时间:2018-06-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CSDN技术头条

能带不同类型的团队,才能叫“敏捷教练”

敏捷教练是一个职业。Scrum Master 和敏捷教练是同一职业的不同阶段。当一个人能带好一个 Scrum 团队时,他是一个 Scrum Master。当他能...

2114
来自专栏java一日一条

2016年 10 个最热门 IT 职业岗位

这是IT从业者的辉煌时代。IT行业的失业率正处在历史的低点,而且有的岗位——例如网络和安全工程师以及软件开发人员——甚至出现徘徊在1%的失业率。根据最近的TEK...

1482
来自专栏大数据技术学习

大数据概念:史上最全大数据解析

现如今,我们身边很多人对一些热门的新技术、新趋势往往趋之若鹜却又很难说得透彻,比如大数据,如果被问大数据和你有什么关系,估计很少能说出一二三来。究其原因,一是因...

2482
来自专栏数据观有话说

消费升级,食品行业如何实现数据掘金?

来自:数据观 https://www.shujuguan.cn/?from=qcloud

1534
来自专栏老九学堂

程序员到底是一个什么职业?

为什么有人在技术造神 大家应该已经感受到,技术圈这两年已经和娱乐圈创业圈差不多的氛围了,这其实是有原因的。 最主要的原因是,创业公司和创业媒体越来越多,他们需要...

2845
来自专栏微信小开发

小程能走网店模式?如何做分销模式的小程序?

小程序来势汹汹,已经是一种不可阻挡的趋势,不少商家早已加入了小程序电商的行列。但效果似乎不尽人意,毕竟小程序本来就有推广难、留存用户难、无法获取数据等“先天不足...

2348
来自专栏云计算D1net

公共云:战略成功的鲜活经验

公共云正快速成为具有前瞻性的公司的战略工具。IT领导者分享他们的经验,并向寻求迁移到公共云服务的首席信息官提供建议,以推动创新、敏捷性和收入增长。 ? 云端作为...

3586
来自专栏钱塘大数据

【推荐收藏】探寻大数据本质,不做DT时代的旁观者

很多人对于热门的新技术、新趋势往往趋之若鹜却又很难说的透彻,如果你问他大数据和你有什么关系?估计很少能说出一二三来。究其原因,一是因为大家对新技术有着相同的原始...

4164
来自专栏华章科技

一篇对大数据深度思考的文章,让你认识并读懂大数据

  我希望有些不一样,所以对该如何去认识大数据进行了一番思索,包括查阅了资料,翻阅了最新的专业书籍,但我并不想把那些零散的资料碎片或不同理解论述简单规整并堆积起...

3383
来自专栏人称T客

SalesForce白皮书:SaaS 初创公司成功的 7 个秘密(下)

T客汇官网:tikehui.com 编译|徐婧欣 ? 秘密 6:建立高度规范的财务流程 由于 SaaS 公司在合同实施过程中获得收益而非提前获得,它们必须以...

3167

扫码关注云+社区

领取腾讯云代金券