专栏首页磐创AI技术团队的专栏PyTorch专栏(五):迁移学习

PyTorch专栏(五):迁移学习

作者 | News

编辑 | 安可

出品 | 磐创AI团队出品

【磐创AI 导读】:本篇文章讲解了PyTorch专栏的第三章中的迁移学习。

专栏目录:

第一章:PyTorch之简介与下载

  • PyTorch简介
  • PyTorch环境搭建

第二章:PyTorch之60分钟入门

  • PyTorch入门
  • PyTorch自动微分
  • PyTorch神经网络
  • PyTorch图像分类器
  • PyTorch数据并行处理

第三章:PyTorch之入门强化

第四章:PyTorch之图像篇

  • 微调基于torchvision 0.3的目标检测模型
  • 微调TorchVision模型
  • 空间变换器网络
  • 使用PyTorch进行神经传递
  • 生成对抗示例
  • 使用ONNX将模型转移至Caffe2和移动端

第五章:PyTorch之文本篇

  • 聊天机器人教程
  • 使用字符级RNN生成名字
  • 使用字符级RNN进行名字分类
  • 在深度学习和NLP中使用Pytorch
  • 使用Sequence2Sequence网络和注意力进行翻译

第六章:PyTorch之生成对抗网络

第七章:PyTorch之强化学习

第三章:PyTorch之入门强化

PyTorch之迁移学习

实际中,基本没有人会从零开始(随机初始化)训练一个完整的卷积网络,因为相对于网络,很难得到一个足够大的数据集[网络很深, 需要足够大数据集]。通常的做法是在一个很大的数据集上进行预训练得到卷积网络ConvNet, 然后将这个ConvNet的参数作为目标任务的初始化参数或者固定这些参数。

转移学习的两个主要场景:

  • 微调Convnet:使用预训练的网络(如在imagenet 1000上训练而来的网络)来初始化自己的网络,而不是随机初始化。其他的训练步骤不变。
  • Convnet看成固定的特征提取器:首先固定ConvNet除了最后的全连接层外的其他所有层。最后的全连接层被替换成一个新的随机 初始化的层,只有这个新的层会被训练[只有这层参数会在反向传播时更新]

下面是利用PyTorch进行迁移学习步骤,要解决的问题是训练一个模型来对蚂蚁和蜜蜂进行分类。

1.导入相关的包

# License: BSD
# Author: Sasank Chilamkurthy

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()   # interactive mode

2.加载数据

今天要解决的问题是训练一个模型来分类蚂蚁ants和蜜蜂bees。ants和bees各有约120张训练图片。每个类有75张验证图片。从零开始在 如此小的数据集上进行训练通常是很难泛化的。由于我们使用迁移学习,模型的泛化能力会相当好。 该数据集是imagenet的一个非常小的子集。从此处下载数据,并将其解压缩到当前目录。

#训练集数据扩充和归一化
#在验证集上仅需要归一化
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224), #随机裁剪一个area然后再resize
        transforms.RandomHorizontalFlip(), #随机水平翻转
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

3.可视化部分图像数据

可视化部分训练图像,以便了解数据扩充。

def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# 获取一批训练数据
inputs, classes = next(iter(dataloaders['train']))

# 批量制作网格
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

4.训练模型

编写一个通用函数来训练模型。下面将说明: * 调整学习速率 * 保存最好的模型

下面的参数scheduler是一个来自 torch.optim.lr_scheduler的学习速率调整类的对象(LR scheduler object)。

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # 每个epoch都有一个训练和验证阶段
        for phase in ['train', 'val']:
            if phase == 'train':
                scheduler.step()
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # 迭代数据.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 零参数梯度
                optimizer.zero_grad()

                # 前向
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # 后向+仅在训练阶段进行优化
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # 统计
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # 深度复制mo
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # 加载最佳模型权重
    model.load_state_dict(best_model_wts)
    return model

5.可视化模型的预测结果

#一个通用的展示少量预测图片的函数
def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)

6.场景1:微调ConvNet

加载预训练模型并重置最终完全连接的图层。

model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

# 观察所有参数都正在优化
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# 每7个epochs衰减LR通过设置gamma=0.1
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

训练和评估模型

(1)训练模型 该过程在CPU上需要大约15-25分钟,但是在GPU上,它只需不到一分钟。

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=25)
  • 输出
Epoch 0/24
----------
train Loss: 0.7032 Acc: 0.6025
val Loss: 0.1698 Acc: 0.9412

Epoch 1/24
----------
train Loss: 0.6411 Acc: 0.7787
val Loss: 0.1981 Acc: 0.9281
·
·
·
Epoch 24/24
----------
train Loss: 0.2812 Acc: 0.8730
val Loss: 0.2647 Acc: 0.9150

Training complete in 1m 7s
Best val Acc: 0.941176

(2)模型评估效果可视化

visualize_model(model_ft)
  • 输出

7.场景2:ConvNet作为固定特征提取器

在这里需要冻结除最后一层之外的所有网络。通过设置requires_grad == Falsebackward()来冻结参数,这样在反向传播backward()的时候他们的梯度就不会被计算。

model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)

训练和评估

(1)训练模型 在CPU上,与前一个场景相比,这将花费大约一半的时间,因为不需要为大多数网络计算梯度。但需要计算转发。

model_conv = train_model(model_conv, criterion, optimizer_conv,
                         exp_lr_scheduler, num_epochs=25)
  • 输出
Epoch 0/24
----------
train Loss: 0.6400 Acc: 0.6434
val Loss: 0.2539 Acc: 0.9085
·
·
·
Epoch 23/24
----------
train Loss: 0.2988 Acc: 0.8607
val Loss: 0.2151 Acc: 0.9412

Epoch 24/24
----------
train Loss: 0.3519 Acc: 0.8484
val Loss: 0.2045 Acc: 0.9412

Training complete in 0m 35s
Best val Acc: 0.954248

(2)模型评估效果可视化

visualize_model(model_conv)

plt.ioff()
plt.show()
  • 输出

8.文件下载

  • py文件 https://pytorch.org/tutorials/_downloads/transfer_learning_tutorial.py
  • jupyter文件 https://pytorch.org/tutorials/_downloads/transfer_learning_tutorial.ipynb

本文分享自微信公众号 - 磐创AI(xunixs),作者:News

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2019-09-09

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 构建对象检测模型

    我喜欢深度学习。坦率地说,这是一个有大量技术和框架可供倾注和学习的广阔领域。当我看到现实世界中的应用程序,如面部识别和板球跟踪等时,建立深度学习和计算机视觉模型...

    磐创AI
  • 【注意力机制】transformers序列化实践

    如果使用这些默认文件名保存模型,则可以使用from_pretrained()方法重新加载模型和tokenizer。

    磐创AI
  • 仅需10分钟:开启你的机器学习之路

    随着行业内机器学习的崛起,能够帮用户快速迭代整个过程的工具变得至关重要。Python,机器学习技术领域冉冉升起的一颗新星,往往是带你走向成功的首选。因此,用 P...

    磐创AI
  • Ext.grid.CheckboxSelectionModel状态设置

    直接上代码: var model = grid.getSelectionModel(); model.selectAll();//选择所有行 model.sel...

    Java中文社群_老王
  • [优化] [CI代码解读] $this->load->model() 问题

    Home 控制器内加载了 menu目录下的 Menu_model和user/User_model 。 menu/Menu_model 又加载了 role/Use...

    CrazyCodes
  • 机器学习实战--对亚马逊森林卫星照片进行分类(3)

    如何运用迁移学习 迁移学习涉及到使用一个在相关任务上训练过的模型的全部或部分。

    PM小王
  • 卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。  技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同...

    bear_fish
  • 扶稳!四大步“上手”超参数调优教程,就等你出马了 | 附完整代码

    【导读】在本文中,我们将为大家介绍如何对神经网络的超参数进行优化调整,以便在 Beale 函数上获得更高性能,Beale 函数是评价优化有效性的众多测试函数之一...

    AI科技大本营
  • 干货|详解CNN五大经典模型:Lenet,Alexnet,Googlenet,VGG,DRL

    文章来源:CSDN 作者:大饼博士X 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整...

    昱良
  • Yii2用Gii自动生成Module+Model+CRUD

    URL:http://localhost/项目目录/backend/index.php/gii

    botkenni

扫码关注云+社区

领取腾讯云代金券