前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度残差收缩网络(完整PyTorch程序)

深度残差收缩网络(完整PyTorch程序)

作者头像
用户7621073
修改2021-04-15 10:25:43
3.9K0
修改2021-04-15 10:25:43
举报
文章被收录于专栏:深度学习基础

1、基础理论

深度残差收缩网络是建立在三个部分的基础之上的,包括残差网络、注意力机制和软阈值化。

(面向强噪、高冗余数据的)残差收缩网络
(面向强噪、高冗余数据的)残差收缩网络

其功能特色包括:

1)由于软阈值化是信号降噪算法的常用步骤,所以深度残差收缩网络比较适合强噪、高冗余数据。同时,软阈值化的梯度要么为0,要么为1,这与ReLU激活函数是相似/一致的。

软阈值化
软阈值化

2)由于软阈值化的阈值是通过类似于SENet的注意力机制自适应地进行设置的,深度残差收缩网络能够根据每个样本的情况,为每个样本单独地设置阈值,因此适用于每个样本内噪声含量不同的情况。

3)当数据噪声很弱、没有噪声时,深度残差收缩网络可能也是适用的。其前提是阈值可以被训练成非常接近于0的值,从而软阈值化就相当于不存在了。

4)值得注意的是,软阈值函数的阈值不能太大,否则会导致所有的输出都是0。所以深度残差收缩网络的注意力模块是经过专门设计的,与一般的SENet是存在明显区别的。

该方法的文献来源:

M. Zhao, S. Zhong, X. Fu, B. Tang, M. Pecht, Deep residual shrinkage networks for fault diagnosis, IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4681-4690, 2020. (https://ieeexplore.ieee.org/document/8850096/

2、PyTorch代码

本文的PyTorch代码是在这份代码(https://github.com/weiaicunzai/pytorch-cifar100)的基础上修改得到的,所以要下载这份代码到本地。主要是修改了models/resnet.py(https://github.com/weiaicunzai/pytorch-cifar100/blob/master/models/resnet.py)和utils.py(https://github.com/weiaicunzai/pytorch-cifar100/blob/master/utils.py)的代码。

另一方面,残差收缩网络的核心代码,则是来源于知乎上最前线创作的一篇文章《用于故障诊断的残差收缩网络》(https://zhuanlan.zhihu.com/p/337346575)。

具体地,将resnet.py文件的名称,改为了rsnet.py,意思是residual shrinkage network。修改后的rsnet.py代码如下:

代码语言:python
代码运行次数:0
复制
import torch
import torch.nn as nn

class BasicBlock(nn.Module):

    expansion = 1
    
    def __init__(self, in_channels, out_channels, stride=1):
        super().__init__()
        self.shrinkage = Shrinkage(out_channels, gap_size=(1, 1))
        #residual function
        self.residual_function = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels * BasicBlock.expansion),
            self.shrinkage
        )
        #shortcut
        self.shortcut = nn.Sequential()

        #the shortcut output dimension is not the same with residual function
        #use 1*1 convolution to match the dimension
        if stride != 1 or in_channels != BasicBlock.expansion * out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels * BasicBlock.expansion)
            )

    def forward(self, x):
        return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))


class Shrinkage(nn.Module):
    def __init__(self,  channel, gap_size):
        super(Shrinkage, self).__init__()
        self.gap = nn.AdaptiveAvgPool2d(gap_size)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel),
            nn.BatchNorm1d(channel),
            nn.ReLU(inplace=True),
            nn.Linear(channel, channel),
            nn.Sigmoid(),
        )

    def forward(self, x):
        x_raw = x
        x = torch.abs(x)
        x_abs = x
        x = self.gap(x)
        x = torch.flatten(x, 1)
        # average = torch.mean(x, dim=1, keepdim=True)
        average = x
        x = self.fc(x)
        x = torch.mul(average, x)
        x = x.unsqueeze(2).unsqueeze(2)
        # soft thresholding
        sub = x_abs - x
        zeros = sub - sub
        n_sub = torch.max(sub, zeros)
        x = torch.mul(torch.sign(x_raw), n_sub)
        return x

class RSNet(nn.Module):

    def __init__(self, block, num_block, num_classes=100):
        super().__init__()

        self.in_channels = 64

        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True))
        #we use a different inputsize than the original paper
        #so conv2_x's stride is 1
        self.conv2_x = self._make_layer(block, 64, num_block[0], 1)
        self.conv3_x = self._make_layer(block, 128, num_block[1], 2)
        self.conv4_x = self._make_layer(block, 256, num_block[2], 2)
        self.conv5_x = self._make_layer(block, 512, num_block[3], 2)
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, out_channels, num_blocks, stride):
        """make rsnet layers(by layer i didnt mean this 'layer' was the
        same as a neuron netowork layer, ex. conv layer), one layer may
        contain more than one residual shrinkage block

        Args:
            block: block type, basic block or bottle neck block
            out_channels: output depth channel number of this layer
            num_blocks: how many blocks per layer
            stride: the stride of the first block of this layer

        Return:
            return a rsnet layer
        """

        # we have num_block blocks per layer, the first block
        # could be 1 or 2, other blocks would always be 1
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_channels, out_channels, stride))
            self.in_channels = out_channels * block.expansion

        return nn.Sequential(*layers)

    def forward(self, x):
        output = self.conv1(x)
        output = self.conv2_x(output)
        output = self.conv3_x(output)
        output = self.conv4_x(output)
        output = self.conv5_x(output)
        output = self.avg_pool(output)
        output = output.view(output.size(0), -1)
        output = self.fc(output)

        return output

def rsnet18():
    """ return a RSNet 18 object
    """
    return RSNet(BasicBlock, [2, 2, 2, 2])

def rsnet34():
    """ return a RSNet 34 object
    """
    return RSNet(BasicBlock, [3, 4, 6, 3])

然后,将utils.py文件中的第62-64行:

代码语言:python
代码运行次数:0
复制
    elif args.net == 'resnet18':
        from models.resnet import resnet18
        net = resnet18()

修改为:

代码语言:python
代码运行次数:0
复制
    elif args.net == 'rsnet18':
        from models.rsnet import rsnet18
        net = rsnet18()

然后在运行窗口输入:

代码语言:python
代码运行次数:0
复制
python train.py -net rsnet18 -gpu

就可以运行程序了。

3、其他代码

论文原作者在GitHub上提供了TFLearn和Keras代码,见链接:https://github.com/zhao62/Deep-Residual-Shrinkage-Networks

也有网友编写了TensorFlow 2.0的代码:

https://blog.csdn.net/qq_36758914/article/details/109452735

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系转载前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
作者已关闭评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、基础理论
    • 其功能特色包括:
      • 该方法的文献来源:
      • 2、PyTorch代码
      • 3、其他代码
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档