前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >训练提速17%,第四范式开源强化学习研究框架,支持单、多智能体训练

训练提速17%,第四范式开源强化学习研究框架,支持单、多智能体训练

作者头像
数据派THU
发布2023-05-18 11:10:55
4000
发布2023-05-18 11:10:55
举报
文章被收录于专栏:数据派THU数据派THU
代码语言:javascript
复制
来源:机器之心本文约4000字,建议阅读10分钟强化学习研究框架 OpenRL 是基于 PyTorch 开发的,已经在 GitHub 上开源。

OpenRL 是由第四范式强化学习团队开发的基于 PyTorch 的强化学习研究框架,支持单智能体、多智能体、自然语言等多种任务的训练。

OpenRL 基于 PyTorch 进行开发,目标是为强化学习研究社区提供一个简单易用、灵活高效、可持续扩展的平台。目前,OpenRL 支持的特性包括:

  • 简单易用且支持单智能体、多智能体训练的通用接口
  • 支持自然语言任务(如对话任务)的强化学习训练
  • 支持从 Hugging Face 上导入模型和数据
  • 支持 LSTM,GRU,Transformer 等模型
  • 支持多种训练加速,例如:自动混合精度训练,半精度策略网络收集数据等
  • 支持用户自定义训练模型、奖励模型、训练数据以及环境
  • 支持 gymnasium 环境
  • 支持字典观测空间
  • 支持 wandb,tensorboardX 等主流训练可视化工具
  • 支持环境的串行和并行训练,同时保证两种模式下的训练效果一致
  • 中英文文档
  • 提供单元测试和代码覆盖测试
  • 符合 Black Code Style 和类型检查

目前,OpenRL 已经在 GitHub 开源:

项目地址:https://github.com/OpenRL-Lab/openrl

OpenRL 初体验

OpenRL 目前可以通过 pip 进行安装:

代码语言:javascript
复制
pip install openrl

也可以通过 conda 安装:

代码语言:javascript
复制
conda install -c openrl openrl

OpenRL 为强化学习入门用户提供了简单易用的接口, 下面是一个使用 PPO 算法训练 CartPole 环境的例子:

代码语言:javascript
复制
# train_ppo.pyfrom openrl.envs.common import makefrom openrl.modules.common import PPONet as Netfrom openrl.runners.common import PPOAgent as Agentenv = make ("CartPole-v1", env_num=9) # 创建环境,并设置环境并行数为 9net = Net (env) # 创建神经网络agent = Agent (net) # 初始化智能体agent.train (total_time_steps=20000) # 开始训练,并设置环境运行总步数为 20000

使用 OpenRL 训练智能体只需要简单的四步:创建环境 => 初始化模型 => 初始化智能体 => 开始训练!

在普通笔记本电脑上执行以上代码,只需要几秒钟,便可以完成该智能体的训练:

此外,对于多智能体、自然语言等任务的训练,OpenRL 也提供了同样简单易用的接口。例如,对于多智能体任务中的 MPE 环境,OpenRL 也只需要调用几行代码便可以完成训练:

代码语言:javascript
复制
# train_ppo.pyfrom openrl.envs.common import makefrom openrl.modules.common import PPONet as Netfrom openrl.runners.common import PPOAgent as Agentdef train ():    # 创建 MPE 环境,使用异步环境,即每个智能体独立运行    env = make (        "simple_spread",        env_num=100,        asynchronous=True,    )    # 创建 神经网络,使用 GPU 进行训练    net = Net (env, device="cuda")    agent = Agent (net) # 初始化训练器    # 开始训练    agent.train (total_time_steps=5000000)    # 保存训练完成的智能体    agent.save ("./ppo_agent/")if __name__ == "__main__":    train ()

下图展示了通过 OpenRL 训练前后智能体的表现:

加载配置文件

此外,OpenRL 还同时支持从命令行和配置文件对训练参数进行修改。比如,用户可以通过执行 python train_ppo.py --lr 5e-4 来快速修改训练时候的学习率。

当配置参数非常多的时候,OpenRL 还支持用户编写自己的配置文件来修改训练参数。例如,用户可以自行创建以下配置文件 (mpe_ppo.yaml),并修改其中的参数:

代码语言:javascript
复制
# mpe_ppo.yamlseed: 0 # 设置 seed,保证每次实验结果一致lr: 7e-4 # 设置学习率episode_length: 25 # 设置每个 episode 的长度use_recurrent_policy: true # 设置是否使用 RNNuse_joint_action_loss: true # 设置是否使用 JRPO 算法use_valuenorm: true # 设置是否使用 value normalization

最后,用户只需要在执行程序的时候指定该配置文件即可:

代码语言:javascript
复制
python train_ppo.py --config mpe_ppo.yaml

训练与测试可视化

此外,通过 OpenRL,用户还可以方便地使用 wandb 来可视化训练过程:

OpenRL 还提供了各种环境可视化的接口,方便用户对并行环境进行可视化。用户可以在创建并行环境的时候设置环境的渲染模式为 "group_human",便可以同时对多个并行环境进行可视化:

代码语言:javascript
复制
env = make ("simple_spread", env_num=9, render_mode="group_human")

此外,用户还可以通过引入 GIFWrapper 来把环境运行过程保存为 gif 动画:

代码语言:javascript
复制
from openrl.envs.wrappers import GIFWrapperenv = GIFWrapper (env, "test_simple_spread.gif")

智能体的保存和加载

OpenRL 提供 agent.save () 和 agent.load () 接口来保存和加载训练好的智能体,并通过 agent.act () 接口来获取测试时的智能体动作:

代码语言:javascript
复制
# test_ppo.pyfrom openrl.envs.common import makefrom openrl.modules.common import PPONet as Netfrom openrl.runners.common import PPOAgent as Agentfrom openrl.envs.wrappers import GIFWrapper # 用于生成 gifdef test ():    # 创建 MPE 环境    env = make ( "simple_spread", env_num=4)    # 使用 GIFWrapper,用于生成 gif    env = GIFWrapper (env, "test_simple_spread.gif")    agent = Agent (Net (env)) # 创建 智能体    # 保存智能体    agent.save ("./ppo_agent/")        # 加载智能体    agent.load ('./ppo_agent/')    # 开始测试    obs, _ = env.reset ()    while True:        # 智能体根据 observation 预测下一个动作        action, _ = agent.act (obs)        obs, r, done, info = env.step (action)        if done.any ():            break    env.close ()if __name__ == "__main__":    test ()

执行该测试代码,便可以在同级目录下找到保存好的环境运行动画文件 (test_simple_spread.gif):

训练自然语言对话任务

最近的研究表明,强化学习也可以用于训练语言模型, 并且能显著提升模型的性能。目前,OpenRL 已经支持自然语言对话任务的强化学习训练。OpenRL 通过模块化设计,支持用户加载自己的数据集 ,自定义训练模型,自定义奖励模型,自定义 wandb 信息输出以及一键开启混合精度训练等。

对于对话任务训练,OpenRL 提供了同样简单易用的训练接口:

代码语言:javascript
复制
# train_ppo.pyfrom openrl.envs.common import makefrom openrl.modules.common import PPONet as Netfrom openrl.runners.common import PPOAgent as Agentfrom openrl.configs.config import create_config_parserdef train ():    # 添加读取配置文件的代码    cfg_parser = create_config_parser ()    cfg = cfg_parser.parse_args ()    # 创建 NLP 环境    env = make ("daily_dialog",env_num=2,asynchronous=True,cfg=cfg,)    net = Net (env, cfg=cfg, device="cuda")    agent = Agent (net)    agent.train (total_time_steps=5000000)if __name__ == "__main__":    train ()

可以看出,OpenRL 训练对话任务和其他强化学习任务一样,都是通过创建交互环境的方式进行训练。

加载自定义数据集

训练对话任务,需要对话数据集。这里我们可以使用 Hugging Face 上的公开数据集(用户可以替换成自己的数据集)。加载数据集,只需要在配置文件中传入数据集的名称或者路径即可:

代码语言:javascript
复制
# nlp_ppo.yamldata_path: daily_dialog # 数据集路径env: # 环境所用到的参数    args: {'tokenizer_path': 'gpt2'} # 读取 tokenizer 的路径seed: 0 # 设置 seed,保证每次实验结果一致lr: 1e-6 # 设置 policy 模型的学习率critic_lr: 1e-6 # 设置 critic 模型的学习率episode_length: 20 # 设置每个 episode 的长度use_recurrent_policy: true

上述配置文件中的 data_path 可以设置为 Hugging Face 数据集名称或者本地数据集路径。此外,环境参数中的 tokenizer_path 用于指定加载文字编码器的 Hugging Face 名称或者本地路径。

自定义训练模型

在 OpenRL 中,我们可以使用 Hugging Face 上的模型来进行训练。为了加载 Hugging Face 上的模型,我们首先需要在配置文件 nlp_ppo.yaml 中添加以下内容:‍

代码语言:javascript
复制
# nlp_ppo.yaml# 预训练模型路径model_path: rajkumarrrk/gpt2-fine-tuned-on-daily-dialog use_share_model: true # 策略网络和价值网络是否共享模型ppo_epoch: 5 # ppo 训练迭代次数

data_path: daily_dialog # 数据集名称或者路径env: # 环境所用到的参数    args: {'tokenizer_path': 'gpt2'} # 读取 tokenizer 的路径lr: 1e-6 # 设置 policy 模型的学习率critic_lr: 1e-6 # 设置 critic 模型的学习率episode_length: 128 # 设置每个 episode 的长度num_mini_batch: 20

然后在 train_ppo.py 中添加以下代码:

代码语言:javascript
复制
# train_ppo.pyfrom openrl.envs.common import makefrom openrl.modules.common import PPONet as Netfrom openrl.runners.common import PPOAgent as Agentfrom openrl.configs.config import create_config_parserfrom openrl.modules.networks.policy_value_network_gpt import (    PolicyValueNetworkGPT as PolicyValueNetwork,)def train ():    # 添加读取配置文件的代码    cfg_parser = create_config_parser ()    cfg = cfg_parser.parse_args ()    # 创建 NLP 环境    env = make ("daily_dialog",env_num=2,asynchronous=True,cfg=cfg,)    # 创建自定义神经网络    model_dict = {"model": PolicyValueNetwork}    net = Net (env, cfg=cfg, model_dict=model_dict)    # 创建训练智能体    agent = Agent (net)    agent.train (total_time_steps=5000000)if __name__ == "__main__":    train ()

‍通过以上简单几行的修改,用户便可以使用 Hugging Face 上的预训练模型进行训练。如果用户希望分别自定义策略网络和价值网络,可以写好 CustomPolicyNetwork 以及 CustomValueNetwork 后通过以下方式从外部传入训练网络:

代码语言:javascript
复制
model_dict = {    "policy": CustomPolicyNetwork,    "critic": CustomValueNetwork,}net = Net (env, model_dict=model_dict)

自定义奖励模型

通常,自然语言任务的数据集中并不包含奖励信息。因此,如果需要使用强化学习来训练自然语言任务,就需要使用额外的奖励模型来生成奖励。在该对话任务中,我们可以使用一个复合的奖励模型,它包含以下三个部分:

  • 意图奖励:即当智能体生成的语句和期望的意图接近时,智能体便可以获得更高的奖励。
  • METEOR 指标奖励:METEOR 是一个用于评估文本生成质量的指标,它可以用来衡量生成的语句和期望的语句的相似程度。我们把这个指标作为奖励反馈给智能体,以达到优化生成的语句的效果。
  • KL 散度奖励:该奖励用来限制智能体生成的文本偏离预训练模型的程度,防止出现 reward hacking 的问题。

我们最终的奖励为以上三个奖励的加权和,其中 KL 散度奖励的系数是随着 KL 散度的大小动态变化的。想在 OpenRL 中使用该奖励模型,用户无需修改训练代码,只需要在 nlp_ppo.yaml 文件中添加 reward_class 参数即可:

代码语言:javascript
复制
# nlp_ppo.yamlreward_class:    id: NLPReward # 奖励模型名称    args: {        # 用于意图判断的模型的名称或路径        "intent_model": rajkumarrrk/roberta-daily-dialog-intent-classifier,        # 用于计算 KL 散度的预训练模型的名称或路径        "ref_model": roberta-base, # 用于意图判断的 tokenizer 的名称或路径    }

OpenRL 支持用户使用自定义的奖励模型。首先,用户需要编写自定义奖励模型 (需要继承 BaseReward 类)。接着,用户需要注册自定义的奖励模型,即在 train_ppo.py 添加以下代码:

代码语言:javascript
复制
# train_ppo.pyfrom openrl.rewards.nlp_reward import CustomRewardfrom openrl.rewards import RewardFactoryRewardFactory.register ("CustomReward", CustomReward)

最后,用户只需要在配置文件中填写自定义的奖励模型即可:

代码语言:javascript
复制
reward_class:    id: "CustomReward" # 自定义奖励模型名称    args: {} # 用户自定义奖励函数可能用到的参数

自定义训练过程信息输出

OpenRL 还支持用户自定义 wandb 和 tensorboard 的输出内容。例如,在该任务的训练过程中,我们还需要输出各种类型奖励的信息和 KL 散度系数的信息, 用户可以在 nlp_ppo.yaml 文件中加入 vec_info_class 参数来实现:

代码语言:javascript
复制
# nlp_ppo.yamlvec_info_class:    id: "NLPVecInfo" # 调用 NLPVecInfo 类以打印 NLP 任务中奖励函数的信息# 设置 wandb 信息wandb_entity: openrl # 这里用于指定 wandb 团队名称,请把 openrl 替换为你自己的团队名称experiment_name: train_nlp # 这里用于指定实验名称run_dir: ./run_results/ # 这里用于指定实验数据保存的路径log_interval: 1 # 这里用于指定每隔多少个 episode 上传一次 wandb 数据# 自行填写其他参数...

‍修改完配置文件后,在 train_ppo.py 文件中启用 wandb:

代码语言:javascript
复制
# train_ppo.pyagent.train (total_time_steps=100000, use_wandb=True)

然后执行 python train_ppo.py –config nlp_ppo.yaml,稍后,便可以在 wandb 中看到如下的输出:

从上图可以看到,wandb 输出了各种类型奖励的信息和 KL 散度系数的信息。 

如果用户还需要输出其他信息,还可以参考 NLPVecInfo 类 和 VecInfo 类来实现自己的 CustomVecInfo 类。然后,需要在 train_ppo.py 中注册自定义的 CustomVecInfo 类:‍

代码语言:javascript
复制
# train_ppo.py # 注册自定义输出信息类 VecInfoFactory.register ("CustomVecInfo", CustomVecInfo)

最后,只需要在 nlp_ppo.yaml 中填写 CustomVecInfo 类即可启用:

代码语言:javascript
复制
# nlp_ppo.yamlvec_info_class:    id: "CustomVecInfo" # 调用自定义 CustomVecInfo 类以输出自定义信息

使用混合精度训练加速

OpenRL 还提供了一键开启混合精度训练的功能。用户只需要在配置文件中加入以下参数即可:

代码语言:javascript
复制
# nlp_ppo.yamluse_amp: true # 开启混合精度训练

对比评测

下表格展示了使用 OpenRL 训练该对话任务的结果。结果显示使用强化学习训练后,模型各项指标皆有所提升。另外,从下表可以看出,相较于 RL4LMs , OpenRL 的训练速度更快(在同样 3090 显卡的机器上,速度提升 17% ),最终的性能指标也更好:

最后,对于训练好的智能体,用户可以方便地通过 agent.chat () 接口进行对话:‍

代码语言:javascript
复制
# chat.pyfrom openrl.runners.common import ChatAgent as Agentdef chat ():    agent = Agent.load ("./ppo_agent", tokenizer="gpt2",)    history = []    print ("Welcome to OpenRL!")    while True:        input_text = input ("> User:")        if input_text == "quit":            break        elif input_text == "reset":            history = []            print ("Welcome to OpenRL!")            continue        response = agent.chat (input_text, history)        print (f"> OpenRL Agent: {response}")        history.append (input_text)        history.append (response)if __name__ == "__main__":    chat ()

执行 python chat.py ,便可以和训练好的智能体进行对话了:

总结

OpenRL 框架经过了 OpenRL-Lab 的多次迭代并应用于学术研究和 AI 竞赛,目前已经成为了一个较为成熟的强化学习框架。OpenRL-Lab 团队将持续维护和更新 OpenRL,欢迎大家加入我们的开源社区,一起为强化学习的发展做出贡献。更多关于 OpenRL 的信息,可以参考:

  • OpenRL 官方仓库:https://github.com/OpenRL-Lab/openrl/
  • OpenRL 中文文档:https://openrl-docs.readthedocs.io/zh/latest/

致谢

OpenRL 框架的开发吸取了其他强化学习框架的优点:

  • Stable-baselines3: https://github.com/DLR-RM/stable-baselines3
  • pytorch-a2c-ppo-acktr-gail:https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
  • MAPPO: https://github.com/marlbenchmark/on-policy
  • Gymnasium: https://github.com/Farama-Foundation/Gymnasium
  • DI-engine:https://github.com/opendilab/DI-engine/
  • Tianshou: https://github.com/thu-ml/tianshou
  • RL4LMs: https://github.com/allenai/RL4LMs

未来工作

目前,OpenRL 还处于持续开发和建设阶段,未来 OpenRL 将会开源更多功能:

  • 支持智能体自博弈训练
  • 加入离线强化学习、模范学习、逆强化学习算法
  • 加入更多强化学习环境和算法
  • 集成 Deepspeed 等加速框架
  • 支持多机分布式训练

OpenRL Lab 团队

OpenRL框架是由OpenRL Lab团队开发,该团队是第四范式公司旗下的强化学习研究团队。第四范式长期致力于强化学习的研发和工业应用。为了促进强化学习的产学研一体化,第四范式成立了OpenRL Lab研究团队,目标是先进技术开源和人工智能前沿探索。成立不到一年,OpenRL Lab团队已经在AAMAS发表过三篇论文,参加谷歌足球游戏 11 vs 11比赛并获得第三的成绩。团队提出的TiZero智能体,实现了首个从零开始,通过课程学习、分布式强化学习、自博弈等技术完成谷歌足球全场游戏智能体的训练:

截止 2022 年 10 月 28 日,Tizero 在及第评测平台上排名第一:

编辑:黄继彦

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2023-05-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据派THU 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档