前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者

R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者

作者头像
拓端
发布2023-10-17 14:45:25
1530
发布2023-10-17 14:45:25
举报
文章被收录于专栏:拓端tecdat拓端tecdat

全文链接:http://tecdat.cn/?p=22448

今天,我们将看下bagging 技术里面的启发式算法。

通常,bagging 与树有关,用于生成森林。但实际上,任何类型的模型都有可能使用bagging 。回顾一下,bagging意味着 "boostrap聚合"。因此,考虑一个模型m:X→Y。让

表示从样本中得到的m的估计

现在考虑一些boostrap样本,

,i是从{1,⋯,n}中随机抽取的。基于该样本,估计

。然后抽出许多样本,考虑获得的估计值的一致性,使用多数规则,或使用概率的平均值(如果考虑概率主义模型)。因此

Bagging逻辑回归

考虑一下逻辑回归的情况。为了产生一个bootstrap样本,自然要使用上面描述的技术。即随机抽取一对(yi,xi),均匀地(概率为

)替换。这里考虑一下小数据集。对于bagging部分,使用以下代码

代码语言:javascript
复制
for(s in 1:1000){
  df_s = df\[sample(1:n,size=n,replace=TRUE)
  logit\[s\]= glm(y~., df_s, family=binomial

然后,我们应该在这1000个模型上进行汇总,获得bagging的部分。

代码语言:javascript
复制
  unlist(lapply(1:1000,function(z) predict(logit\[z\],nnd))}

我们现在对任何新的观察都有一个预测

代码语言:javascript
复制
vv = outer(vu,vu,(function(x,y) mean(pre(c(x,y)))
contour(vu,vu,vv,levels = .5,add=TRUE)

点击标题查阅往期内容

Bagging逻辑回归

另一种可用于生成bootstrap样本的技术是保留所有的xi,但对其中的每一个,都(随机地)抽取一个y的值,其中有

因此

因此,现在Bagging算法的代码是

代码语言:javascript
复制
glm(y~x1+x2, df, family=binomial)
for(s in 1:100)
  y = rbinom(size=1,prob=predict(reg,type="response")
  L\_logit\[s\] = glm(y~., df\_s, family=binomial)

bagging算法的agg部分保持不变。在这里我们获得

代码语言:javascript
复制
vv = outer(vu,vu,(function(x,y) mean(pre(c(x,y)))))
contour(vu,vu,vv,levels = .5,add=TRUE)

当然,我们可以使用该代码,检查预测获得我们的样本中的观察。

在这里考虑心肌梗塞数据。

数据

我们使用心脏病数据,预测急诊病人的心肌梗死,包含变量:

  1. 心脏指数
  2. 心搏量指数
  3. 舒张压
  4. 肺动脉压
  5. 心室压力
  6. 肺阻力
  7. 是否存活

其中我们有急诊室的观察结果,对于心肌梗塞,我们想了解谁存活下来了,得到一个预测模型

代码语言:javascript
复制
reg = glm(as.factor(PRO)~., carde, family=binomial)
for(s in 1:1000){
  L\_logit\[s\] = glm(as.factor(PRO)~., my\_s, family=binomial)
}

unlist(lapply(1:100,predict(L_logit\[z\],newdata=d,type="response")}

对于第一个观察,通过我们的1000个模拟数据集,以及我们的1000个模型,我们得到了以下死亡概率的估计。

代码语言:javascript
复制
v_x = p(x)
hist(v_x,proba=TRUE,breaks=seq(,by.05),=",="",
segments(mean(v\_x),0,mean(v\_x,5="=2)

因此,对于第一个观察,在78.8%的模型中,预测的概率高于50%,平均概率实际上接近75%。

或者,对于样本22,预测与第一个非常接近。

代码语言:javascript
复制
histo(23)
histo(11)

我们在此观察到

Bagging决策树

Bagging是由Leo Breiman于1994年在Bagging Predictors中介绍的。如果说第一节描述了这个程序,那么第二节则介绍了 "Bagging分类树"。树对于解释来说是不错的,但大多数时候,它们是相当差的预测模型。Bagging的想法是为了提高分类树的准确性。 bagging 的想法是为了生成大量的树

代码语言:javascript
复制
for(i in 1:12)
  set.seed(sed\[i\])
idx = sample(1:n, size=n, replace=TRUE)
cart =  rpart(PR~., md\[idx,\])

这个策略其实和以前一样。对于bootstrap部分,将树存储在一个列表中

代码语言:javascript
复制
for(s in 1:1000)
idx = sample(1:n, size=n, replace=TRUE)
  L_tree\[\[s\]\] = rpart(as.(PR)~.)

而对于汇总部分,只需取预测概率的平均值即可

代码语言:javascript
复制
p = function(x){
  unlist(lapply(1:1000,function(z) predict(L_tree\[z\],newdata,)\[,2\])

因为在这个例子中,我们无法实现预测的可视化,让我们在较小的数据集上运行同样的代码。

代码语言:javascript
复制
for(s in 1:1000){
  idx = sample(1:n, size=n, replace=TRUE)
  L_tree\[s\] = rpart(y~x1+x2,
}
  unlist(lapply(1:1000,function(z) predict(L_tree\[\[z\]\])
outer(vu,vu,Vectorize(function(x,y) mean(p(c(x,y)))

从bagging到森林

在这里,我们生成了很多树,但它并不是严格意义上的随机森林算法,正如1995年在《随机决策森林》中介绍的那样。实际上,区别在于决策树的创建。当我们有一个节点时,看一下可能的分割:我们考虑所有可能的变量,以及所有可能的阈值。这里的策略是在p中随机抽取k个变量(当然k<p,例如k=sqrt{p})。这在高维度上是有趣的,因为在每次分割时,我们应该寻找所有的变量和所有的阈值,而这可能需要相当长的时间(尤其是在bootstrap 程序中,目标是长出1000棵树)。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2023-10-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 拓端数据部落 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 全文链接:http://tecdat.cn/?p=22448
    • Bagging逻辑回归
      • Bagging逻辑回归
      • 数据
        • Bagging决策树
          • 从bagging到森林
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档