特征工程全过程

1 特征工程是什么?

  有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。通过总结和归纳,人们认为特征工程包括以下方面:

特征处理是特征工程的核心部分,sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维等。首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也十分强大!

  本文中使用sklearn中的IRIS(鸢尾花)数据集

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris

来对特征处理功能进行说明。IRIS数据集由Fisher在1936年整理,包含4个特征(Sepal.Length(花萼长度)、Sepal.Width(花萼宽度)、Petal.Length(花瓣长度)、Petal.Width(花瓣宽度)),特征值都为正浮点数,单位为厘米。目标值为鸢尾花的分类(Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾),Iris Virginica(维吉尼亚鸢尾))。导入IRIS数据集的代码如下:

 1 from sklearn.datasets import load_iris 
 2  
 3 #导入IRIS数据集 
 4 iris = load_iris() 
 5  
 6 #特征矩阵 
 7 iris.data 
 8  
 9 #目标向量

10 iris.target

2 数据预处理

  通过特征提取,我们能得到未经处理的特征,这时的特征可能有以下问题:

  • 不属于同一量纲:即特征的规格不一样,不能够放在一起比较。无量纲化可以解决这一问题。
  • 信息冗余:对于某些定量特征,其包含的有效信息为区间划分,例如学习成绩,假若只关心“及格”或不“及格”,那么需要将定量的考分,转换成“1”和“0”表示及格和未及格。二值化可以解决这一问题。
  • 定性特征不能直接使用:某些机器学习算法和模型只能接受定量特征的输入,那么需要将定性特征转换为定量特征。最简单的方式是为每一种定性值指定一个定量值,但是这种方式过于灵活,增加了调参的工作。通常使用哑编码的方式将定性特征转换为定量特征:http://www.ats.ucla.edu/stat/mult_pkg/faq/general/dummy.htm
  • 假设有N种定性值,则将这一个特征扩展为N种特征,当原始特征值为第i种定性值时,第i个扩展特征赋值为1,其他扩展特征赋值为0。哑编码的方式相比直接指定的方式,不用增加调参的工作,对于线性模型来说,使用哑编码后的特征可达到非线性的效果。
  • 存在缺失值:缺失值需要补充。
  • 信息利用率低:不同的机器学习算法和模型对数据中信息的利用是不同的,之前提到在线性模型中,使用对定性特征哑编码可以达到非线性的效果。类似地,对定量变量多项式化,或者进行其他的转换,都能达到非线性的效果。

  我们使用sklearn中的preproccessing库来进行数据预处理,可以覆盖以上问题的解决方案。

2.1 无量纲化

  无量纲化使不同规格的数据转换到同一规格。常见的无量纲化方法有标准化和区间缩放法。标准化的前提是特征值服从正态分布,标准化后,其转换成标准正态分布。区间缩放法利用了边界值信息,将特征的取值区间缩放到某个特点的范围,例如[0, 1]等。

2.1.1 标准化

  标准化需要计算特征的均值和标准差,公式表达为:

  使用preproccessing库的StandardScaler类对数据进行标准化的代码如下:

1 from sklearn.preprocessing import StandardScaler

2 
3 #标准化,返回值为标准化后的数据

4 StandardScaler().fit_transform(iris.data)

2.1.2 区间缩放法

  区间缩放法的思路有多种,常见的一种为利用两个最值进行缩放,公式表达为:

  使用preproccessing库的MinMaxScaler类对数据进行区间缩放的代码如下:

3 特征选择

  当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:

  • 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。
  • 特征与目标的相关性:这点比较显见,与目标相关性高的特征,应当优选选择。除方差法外,本文介绍的其他方法均从相关性考虑。

  根据特征选择的形式又可以将特征选择方法分为3种:

  • Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。
  • Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征。
  • Embedded:嵌入法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。

  我们使用sklearn中的feature_selection库来进行特征选择。

3.1 Filter

3.1.1 方差选择法

  使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。使用feature_selection库的VarianceThreshold类来选择特征的代码如下:

4 降维

  当特征选择完成后,可以直接训练模型了,但是可能由于特征矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也是必不可少的。常见的降维方法除了以上提到的基于L1惩罚项的模型以外,另外还有主成分分析法(PCA)和线性判别分析(LDA),线性判别分析本身也是一个分类模型。PCA和LDA有很多的相似点,其本质是要将原始的样本映射到维度更低的样本空间中,但是PCA和LDA的映射目标不一样:PCA是为了让映射后的样本具有最大的发散性;而LDA是为了让映射后的样本有最好的分类性能。

http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html

所以说PCA是一种无监督的降维方法,而LDA是一种有监督的降维方法。

4.1 主成分分析法(PCA)

  使用decomposition库的PCA类选择特征的代码如下:

1 from sklearn.decomposition import PCA
2 
3 #主成分分析法,返回降维后的数据

4 #参数n_components为主成分数目

5 PCA(n_components=2).fit_transform(iris.data)

4.2 线性判别分析法(LDA)

  使用lda库的LDA类选择特征的代码如下:

1 from sklearn.lda import LDA
2 
3 #线性判别分析法,返回降维后的数据

4 #参数n_components为降维后的维数

5 LDA(n_components=2).fit_transform(iris.data, iris.target)

4.3 回顾

说明

decomposition

PCA

主成分分析法

lda

LDA

线性判别分析法

5 总结

  再让我们回归一下本文开始的特征工程的思维导图,我们可以使用sklearn完成几乎所有特征处理的工作,而且不管是数据预处理,还是特征选择,抑或降维,它们都是通过某个类的方法fit_transform完成的,fit_transform要不只带一个参数:特征矩阵,要不带两个参数:特征矩阵加目标向量。这些难道都是巧合吗?还是故意设计成这样?方法fit_transform中有fit这一单词,它和训练模型的fit方法有关联吗?

KDD CUP 2018 前4 名解决方案公开: AI预测空气质量

【项目.源码】深度学习实现任意风格任意内容的极速风格迁移

【项目.源码】深度学习视觉计算辅助良品检验,如何做布匹疵点识别?

本文分享自微信公众号 - 机器学习AI算法工程(datayx)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-09-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • XDeepFM 模型,字节跳动短视频内容理解和推荐系统

    一图胜千言,仅一张图片就包含大量信息,难以用几个词来描述,更何况是短视频这种富媒体形态。面对短视频内容理解的难题,字节跳动作为一家拥有海量短视频素材和上亿级用户...

    机器学习AI算法工程
  • 你还在用“人工特征工程+线性模型”?

    作者:李沐M 11年的时候我加入百度,在凤巢使用机器学习来做广告点击预测。当时非常惊讶于过去两年内训练数据如此疯狂的增长。大家都在热情的谈特征,每次新特征的...

    机器学习AI算法工程
  • 一战成名,用户贷款风险预测 参赛代码与数据集分享

    队伍名“一战成名” 最终线上排名第七。 ? 任务 融360与平台上的金融机构合作,提供了近7万贷款用户的基本身份信息、消费行为、银行还款等数据信息,需要参...

    机器学习AI算法工程
  • 浅谈微视推荐系统中的特征工程

    ? 本文作者:hannahguo,腾讯 PCG 推荐算法工程师 在推荐系统中,特征工程扮演着重要的角色。俗话说数据和特征决定了机器学习算法的上限,而模型、算...

    腾讯技术工程官方号
  • 【SPA大赛】数据处理经验以及特征选择方法

    第一次接触这样的比赛,前期花了很多时间来尝试错误的处理方式,特征筛选方式,靠了很多拍脑门决定的以及突发奇想的特征拿到了初赛66名。想一想真是全看运气。 不过,也...

    晁涌耀
  • 脑电机器学习数据处理业务

    数据质量检查包括:检查是否存在坏的导联、Marker信息是否完整、信号是否有过大的波动或漂移等。

    用户1279583
  • 7,特征的选择

    有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。根据特征使用方案,有计划地获取、处理和监控数据和特征的工作称之为特...

    lyhue1991
  • 汽车之家推荐系统排序算法迭代之路

    导读:汽车之家的推荐系统紧随前沿技术,在支持内部多个推荐场景的同时,对外也有了一定的输出。未来我们期望汽车之家的推荐系统不只是前沿技术的应用者,更是推动者和创新...

    石晓文
  • 生成型对抗性网络的基本定义和介绍:什么叫生成

    自从电脑诞生后,人类就有一个梦想,让它像人类一样思考。随着人工智能技术的飞速发展,计算机的思考能力突飞猛进,在很多方面已经通过了所谓的“图灵测试”。特别是在深度...

    望月从良
  • 特征工程(下 )- 特征评估

    作者会在本文中结合自己在视频推荐方面的工作经验,着重从工程实现方面,讲述如何对特征进行评估的问题。下文中,我们首先会厘清“特征评估”的概念,然后讲述特征评估的标...

    小萌哥

扫码关注云+社区

领取腾讯云代金券