Numba 利用LLVM将python函数编译成优化后的机器码。Numba编译的由python写的数学算法能够接近C或Fortran的运行速度。LLVM 不仅能编译numba代码,还擅长优化它。
流程如下:
python bytecode ->Numba analyzers ->Numba LLVM IR generator ->
LLVM IR optimizers ->LLVM backend compiler ->Native x86/x64 code
LLVM 命名最早源自于底层虚拟机(Low Level Virtual Machine)的缩写。LLVM是构架编译器(compiler)的框架系统,以C++编写而成,用于优化以任意程序语言编写的程序的编译时间(compile-time)、链接时间(link-time)、运行时间(run-time)以及空闲时间(idle-time),对开发者保持开放,并兼容已有脚本。
你不需要安装C/C++ 编译器,也不需要独立的编译步骤,只需要将numba装饰器应用于你的python函数,numba会完成编译与优化。
下面以一个概率法计算圆周率的例子开始:
from numba import jit,float32, int64
import random
import time
#@jit()
#@jit(nopython=True)
@jit(float32(int64), nopython=True, cache=True, nogil=True)
#@jit(float32(int64), nopython=True, parallel=True)
#@cuda.jit()
def monte_carlo_pi(nsamples):
acc = 0
for i in range(nsamples):
x = random.random()
y = random.random()
if (x ** 2 + y ** 2) < 1.0:
acc += 1
return 4.0 * acc / nsamples
if __name__ == '__main__':
since = time.time()
x = monte_carlo_pi(10000000)
print("time elapsed: ", time.time() - since)
print("pi calculated is ", x)
这段代码如果不利用numba加速,在我的电脑上运行大约需要5.5s。
应用numba装饰器后,运行只需0.13s,只需原来40分之一不到的时间,甚至比自己写的对应的C++代码的运行时间还短。
本文分享自 Python可视化编程机器学习OpenCV 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有