首先,我尝试了这些解决方案:1、2、3和4,但对我来说没有用。
在对神经网络进行训练和测试之后,我试图给出一些例子来验证我的工作。我将方法命名为 predict ,将图像传递给它,以预测它属于哪个类:
def predict(model, image_path, topk=5):
''' Predict the class (or classes) of an image using a trained deep learning model.
'''
output = process_image(image_path)
output.unsqueeze_(0)
output = output.cuda().float()
model.eval()
with torch.no_grad():
score = model(output)
prob, idxs = torch.topk(score, topk)
# Convert indices to classes
idxs = np.array(idxs)
idx_to_class = {val:key for key, val in model.class_to_idx.items()}
classes = [idx_to_class[idx] for idx in idxs[0]]
# Map the class name with collected topk classes
names = []
for cls in classes:
names.append(cat_to_name[str(cls)])
return prob, names
然后是最后一步,显示基于神经网络训练的最终结果,如下所示:
# TODO: Display an image along with the top 5 classes
x_pos, y_pos = predict(model, img_pil, topk=5)
ax_img = imshow(output)
ax_img.set_title(y_pos[0])
plt.figure(figsize=(4,4))
plt.barh(range(len(y_pos)), np.exp(x_pos[0]))
plt.yticks(range(len(y_pos)), y_pos)
plt.show()
错误是:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-45-e3f9951e9804> in <module>()
----> 1 x_pos, y_pos = predict(model, img_pil, topk=5)
2
3 ax_img = imshow(output)
4 ax_img.set_title(y_pos[0])
5
1 frames
<ipython-input-44-d77500f31561> in predict(model, image_path, topk)
14
15 # Convert indices to classes
---> 16 idxs = np.array(idxs)
17 idx_to_class = {val:key for key, val in model.class_to_idx.items()}
18 classes = [idx_to_class[idx] for idx in idxs[0]]
/usr/local/lib/python3.6/dist-packages/torch/tensor.py in __array__(self, dtype)
456 def __array__(self, dtype=None):
457 if dtype is None:
--> 458 return self.numpy()
459 else:
460 return self.numpy().astype(dtype, copy=False)
TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
如何解决这个问题?
我试图将idx更改为idxs = idxs.cpu().numpy()
,错误是:
TypeError Traceback (most recent call last)
<ipython-input-62-e3f9951e9804> in <module>()
5
6 plt.figure(figsize=(4,4))
----> 7 plt.barh(range(len(y_pos)), np.exp(x_pos[0]))
8 plt.yticks(range(len(y_pos)), y_pos)
9
/usr/local/lib/python3.6/dist-packages/torch/tensor.py in __array__(self, dtype)
456 def __array__(self, dtype=None):
457 if dtype is None:
--> 458 return self.numpy()
459 else:
460 return self.numpy().astype(dtype, copy=False)
TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
发布于 2019-09-07 01:37:46
试着改变
idxs = np.array(idxs)
至
idxs = idxs.cpu().numpy()
和变化
plt.barh(range(len(y_pos)), np.exp(x_pos[0]))
至
plt.barh(range(len(y_pos)), np.exp(x_pos[0].cpu().numpy()))
发布于 2021-05-03 10:19:13
因此,如果您在2021年来到这里,仍然有"TypeError:无法将CUDA张量转换为numpy。使用Tensor.cpu()首先复制张量以保存内存。“
从这个站点尝试x.to("cpu").numpy()
,https://jbencook.com/pytorch-numpy-conversion/
所以像idxs = idxs.to("cpu").numpy().squeeze()
这样的东西会起作用。
https://stackoverflow.com/questions/57832423
复制