首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

最新Science封面!不到5个月,985院校「国家杰青」团队,再发Science!

「上海岱算科技有限公司」已向境内外230余家高等院校/科研院所提供了累计1400多项模拟计算服务,赋能科学研究提速增效!合作实验课题组在线发表学术论文期刊有ACS系列、AM系列、Angew、CEJ、EST、JACS、Matter、Nature子刊等,助力科研工作锦上添花!

将碳化钛(Ti3C2Tx)MXene纳米片组装成宏观薄膜是一项挑战,存在空隙、低取向度、弱界面相互作用等问题,从而降低了力学性能。

2024年7月4日,北京航空航天大学化学学院程群峰教授团队在Science期刊发表题为“Ultrastrong MXene film induced by sequential bridging with liquid metal”的研究论文(并被选为当期Science封面),北京航空航天大学李威/张泽军/李雷、新加坡南洋理工大学周天柱(原北京航空航天大学博士后)为论文共同第一作者,程群峰教授为论文通讯作者。

程群峰,北京航空航天大学化学学院教授,国家杰出青年科学基金获得者(2021年)、教育部青年长江学者(2016年)、国家优秀青年科学基金获得者(2015年),专注于仿生纳米复合材料等研究;2008年博士毕业于浙江大学;2008-2010年先后于清华大学、美国佛罗里达州立大学从事博士后研究;2010年1月加入北京航空航天大学。

李威,北京航空航天大学化学学院2021级博士研究生,导师:程群峰教授,专注于多功能仿生纳米复合材料研究。

https://www.science.org/doi/10.1126/science.ado4257

该研究利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片(LBM薄膜),展示了一种超强宏观MXene薄膜,实现了908.4兆帕斯卡的拉伸强度。采用重复循环的逐层涂覆方法,可将LBM膜的取向度提高到0.935,而具有良好变形能力的LM将孔隙率减少到了5.4%。BC的氢键和LM的配位键增强了界面相互作用,提高了应力传递效率。顺序桥接为其他二维纳米片组装成高性能材料提供了一条途径。

为了更有效降低纳米复合材料的孔隙率,该研究创新性地开发了“层层组装”和“刮涂”相结合的策略。首先刮涂MXene纳米片和细菌纤维素(BC),然后刮涂聚多巴胺修饰的LM纳米颗粒(LP),在剪切力作用下LP发生变形并破裂,从而使得内部的LM流入到孔隙结构中,这种新组装策略可以实现逐层降低纳米复合材料的孔隙率。同时,LM表面的三价镓离子和MXene纳米片、BC分别形成了Ti-OGa3+和C-OGa3+配位键,大幅提高了载荷传递能力。制备的LM交联MXene复合薄膜(LBM)具有迄今为止最高的拉伸强度(908.4 MPa)。

图1. LBM薄膜的制备原理及表征

图 2. LBM薄膜的界面相互作用表征

图3. LBM薄膜的力学性能及断裂机理

图4. 电磁干扰屏蔽效能性能

总之,该研究利用LM和BC依次桥接MXene纳米片,制备出了一种超强宏观LBM薄膜。LM纳米颗粒有效减少了LBM膜的空隙,BC的氢键和LM的配位键极大增强了MXene纳米片之间的界面相互作用。这些研究结果进一步提高了MXene纳米片在LBM薄膜中的应力传递效率。此外,LBM薄膜具有较高的电磁屏蔽效率。该研究提出的使用LM和BC的制造策略减少了空隙,提高了应力传递效率,从而可以将其他二维纳米片组装成高性能材料。

值得一提的是:2024年2月15日,北京航空航天大学化学学院程群峰教授、美国得克萨斯大学达拉斯分校Ray H. Baughman教授团队合作在Science期刊发表题为“Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage”的研究论文,北京航空航天大学2019级博士研究生杨娇、中国科学院理化技术研究所李明珠研究员、美国得克萨斯大学达拉斯分校房少立教授、中国科学院过程工程研究所王艳磊副研究员为论文共同第一作者,Ray H. Baughman教授、程群峰教授为论文共同通讯作者,江雷院士等为论文重要共同作者。

https://www.science.org/doi/10.1126/science.adj3549

该研究工作首次利用纳米限域水在室温常压下制备了具有超高拉伸强度(1.87GPa)的面内各向同性Ti3C2Tx交联石墨烯复合薄膜,为其他二维材料的有序组装提供了一种新策略。

■密度泛函理论DFT代算:电荷密度、态密度DOS、能带、费米能级、功函数、ELF;介电常数、弹性模量、声子谱;吉布斯自由能、吸附能、掺杂能、缺陷形成能;HER、OER、ORR、NRR、CO2RR;反应路径、反应机理、迁移能垒等

■量子化学QC计算:静电势、偶极矩、布居数、轨道特性、自旋密度、Fukui函数;激发态、跃迁偶极矩;氢键、π-π堆积、疏水作用力;过渡态、反应能垒、反应机理;红外、拉曼、荧光、磷光、核磁谱、圆二色谱等

■分子动力学MD模拟:生物体系弱相互作用分析、受体-配体组装过程、结合自由能;材料体系的高分子构象预测、材料与溶液界面性质、粗粒化模拟;轨迹分析RMSD/RMSF、径向分布函数RDF、扩散、氢键数量;分子对接;同源建模;虚拟筛选、定量构效关系QSAR

■有限元FEM仿真:结构仿真(接触分析、非线性分析、振动/疲劳/传热/裂纹/碰撞分析);电磁仿真(电场、磁场、电磁耦合、磁热耦合、射频微波);流体仿真(多相流体、组分运输、流体传动、相变);光学/声学仿真相关

  • 发表于:
  • 原文链接https://page.om.qq.com/page/O4XffQz-ynT4nufxbFAlbZ3Q0
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

相关快讯

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券