Loading [MathJax]/jax/input/TeX/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >OpenCV矩阵运算

OpenCV矩阵运算

作者头像
流川疯
发布于 2022-12-02 10:31:18
发布于 2022-12-02 10:31:18
4380
举报

矩阵处理

1、矩阵的内存分配与释放

(1) 总体上:

OpenCV 使用C语言来进行矩阵操作。不过实际上有很多C++语言的替代方案可以更高效地完成。

在OpenCV中向量被当做是有一个维数为1的N维矩阵.

矩阵按行-行方式存储,每行以4字节(32位)对齐.

(2) 为新矩阵分配内存:

CvMat* cvCreateMat(int rows, int cols, int type);

type: 矩阵元素类型.

按CV_<bit_depth>(S|U|F)C<number_of_channels> 方式指定. 例如: CV_8UC1 、CV_32SC2.

示例:

CvMat* M = cvCreateMat(4,4,CV_32FC1);

(3) 释放矩阵内存:

CvMat* M = cvCreateMat(4,4,CV_32FC1);

cvReleaseMat(&M);

(4) 复制矩阵:

CvMat* M1 = cvCreateMat(4,4,CV_32FC1);

CvMat* M2;

M2=cvCloneMat(M1);

(5) 初始化矩阵:

double a[] = { 1, 2, 3, 4,

5, 6, 7, 8,

9, 10, 11, 12 };

CvMat Ma=cvMat(3, 4, CV_64FC1, a);

//等价于:

CvMat Ma;

cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);

(6) 初始化矩阵为单位矩阵:

CvMat* M = cvCreateMat(4,4,CV_32FC1);

cvSetIdentity(M); // does not seem to be working properl

2、访问矩阵元素

(1) 假设需要访问一个2D浮点型矩阵的第(i, j)个单元.

(2) 间接访问:

cvmSet(M,i,j,2.0); // Set M(i,j)

t = cvmGet(M,i,j); // Get M(i,j)

(3) 直接访问(假设矩阵数据按4字节行对齐):

CvMat* M = cvCreateMat(4,4,CV_32FC1);

int n = M->cols;

float *data = M->data.fl;

data[i*n+j] = 3.0;

(4) 直接访问(当数据的行对齐可能存在间隙时 possible alignment gaps):

CvMat* M = cvCreateMat(4,4,CV_32FC1);

int step = M->step/sizeof(float);

float *data = M->data.fl;

(data+i*step)[j] = 3.0;

(5) 对于初始化后的矩阵进行直接访问:

double a[16];

CvMat Ma = cvMat(3, 4, CV_64FC1, a);

a[i*4+j] = 2.0; // Ma(i,j)=2.0;

3、矩阵/向量运算

(1) 矩阵之间的运算:

CvMat *Ma, *Mb, *Mc;

cvAdd(Ma, Mb, Mc); // Ma+Mb -> Mc

cvSub(Ma, Mb, Mc); // Ma-Mb -> Mc

cvMatMul(Ma, Mb, Mc); // Ma*Mb -> Mc

(2) 矩阵之间的元素级运算:

CvMat *Ma, *Mb, *Mc;

cvMul(Ma, Mb, Mc); // Ma.*Mb -> Mc

cvDiv(Ma, Mb, Mc); // Ma./Mb -> Mc

cvAddS(Ma, cvScalar(-10.0), Mc); // Ma.-10 -> Mc

(3) 向量乘积:

double va[] = {1, 2, 3};

double vb[] = {0, 0, 1};

double vc[3];

CvMat Va=cvMat(3, 1, CV_64FC1, va);

CvMat Vb=cvMat(3, 1, CV_64FC1, vb);

CvMat Vc=cvMat(3, 1, CV_64FC1, vc);

double res=cvDotProduct(&Va,&Vb); // 向量点乘: Va . Vb -> res

cvCrossProduct(&Va, &Vb, &Vc); // 向量叉乘: Va x Vb -> Vc

注意在进行叉乘运算时,Va, Vb, Vc 必须是仅有3个元素的向量.

(4) 单一矩阵的运算:

CvMat *Ma, *Mb;

cvTranspose(Ma, Mb); // 转置:transpose(Ma) -> Mb (注意转置阵不能返回给Ma本身)

CvScalar t = cvTrace(Ma); // 迹:trace(Ma) -> t.val[0]

double d = cvDet(Ma); // 行列式:det(Ma) -> d

cvInvert(Ma, Mb); // 逆矩阵:inv(Ma) -> Mb

(5) 非齐次线性方程求解:

CvMat* A = cvCreateMat(3,3,CV_32FC1);

CvMat* x = cvCreateMat(3,1,CV_32FC1);

CvMat* b = cvCreateMat(3,1,CV_32FC1);

cvSolve(&A, &b, &x); // solve (Ax=b) for x

(6) 特征值与特征向量 (矩阵为方阵):

CvMat* A = cvCreateMat(3,3,CV_32FC1);

CvMat* E = cvCreateMat(3,3,CV_32FC1);

CvMat* l = cvCreateMat(3,1,CV_32FC1);

cvEigenVV(A, E, l); // l = A 的特征值(递减顺序)

// E = 对应的特征向量 (行向量)

(7) 奇异值分解(SVD):====

CvMat* A = cvCreateMat(3,3,CV_32FC1);

CvMat* U = cvCreateMat(3,3,CV_32FC1);

CvMat* D = cvCreateMat(3,3,CV_32FC1);

CvMat* V = cvCreateMat(3,3,CV_32FC1);

cvSVD(A, D, U, V, CV_SVD_U_T|CV_SVD_V_T); // A = U D V^T

标志位使矩阵U或V按转置形式返回 (若不转置可能运算出错).

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2014-12-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
《学习opencv》笔记——矩阵和图像处理——cvGEMM,cvGetCol,cvGetCols and cvGetDiag
函数相应的乘法运算公式为:dst = (alpha*src1)xsrc2+(beta*src3)
全栈程序员站长
2022/07/06
5880
《学习opencv》笔记——矩阵和图像处理——cvGEMM,cvGetCol,cvGetCols and cvGetDiag
opencv求逆矩阵函数_c++矩阵
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/171663.html原文链接:https://javaforall.cn
全栈程序员站长
2022/09/25
8740
OpenCV OpenGL手写字符识别
http://blog.csdn.net/wangyaninglm/article/details/17091901
流川疯
2022/11/29
6980
OpenCV OpenGL手写字符识别
g2o、Eigen、Mat矩阵类型转换
本文仅做学术分享,已获得作者授权转载,未经允许请勿二次转载!欢迎各位加入免费知识星球,获取PDF文档,欢迎转发朋友圈,分享快乐。
点云PCL博主
2020/09/30
2K0
单目摄像机标定程序「建议收藏」
我自己写了一个摄像机标定程序,核心算法参照learning opencv,但是那个程序要从命令行预先输入参数,且标定图片要预先准备好,我觉得不太好,我就自己写了一个,跟大家分享下。 若有纰漏,希望大家指正!
全栈程序员站长
2022/11/15
4440
关于opencv中人脸识别主函数的部分注释详解。
该文讲述了利用深度学习对医学图像进行分割的方法。首先,介绍了基于深度学习的图像分割方法的基本原理和技术路线;其次,详细阐述了基于卷积神经网络(CNN)的图像分割方法的具体实现;最后,讨论了基于深度学习进行图像分割的工程实践中的经验和技巧。
林冠宏-指尖下的幽灵
2018/01/02
1.4K0
OpenCV中基于Retinex的图像增强实现
美国物理学家埃德温∙兰德(Edwin Land) 在 1971 年提出一种被称为色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论认为物体的颜色是由物体对长波、中波和短波光线的反射能力决定的,而不是由反射光强度的绝对值决定的,即物体的色彩不受光照非均性的影响,具有一致性。
zy010101
2020/03/19
2.4K0
opencv——访问图像元素(imagedata widthstep)
怎么访问图像元素 (坐标起点相对于图像原点 image origin 从 0 开始,或者是左上角 (img->origin=IPL_ORIGIN_TL) 或者是左下角 (img->origin=IPL_ORIGIN_BL)
全栈程序员站长
2022/08/15
6310
OpenCV 学习日记(三)--- 常见数据类型
TeeyoHuang
2017/12/28
9880
OpenCV kmeans代码
代码:出处忘了 // // Example 13-1. Using K-means // // /* *************** License:************************** Oct. 3, 2008 Right to use this code in any way you want without warrenty, support or any guarentee of it working. BOOK: It would be nice if you
流川疯
2022/11/29
3330
OpenCV kmeans代码
【OpenCV学习】Kmean均值聚类对图片进行减色处理
作者:gnuhpc 出处:http://www.cnblogs.com/gnuhpc/
流川疯
2022/12/02
2950
【OpenCV学习】Kmean均值聚类对图片进行减色处理
学习SVM(一) SVM模型训练与分类的OpenCV实现
学习SVM(一) SVM模型训练与分类的OpenCV实现 学习SVM(二) 如何理解支持向量机的最大分类间隔 学习SVM(三)理解SVM中的对偶问题 学习SVM(四) 理解SVM中的支持向量(Support Vector) 学习SVM(五)理解线性SVM的松弛因子
chaibubble
2022/05/07
1.4K0
学习SVM(一) SVM模型训练与分类的OpenCV实现
OpenCV 2.4.9 支持向量机(SVM)说明
本文翻译自OpenCV 2.4.9官方文档《opencv2refman.pdf》。 前言 Originally, support vector machines (SVM) was a techni
剑影啸清寒
2018/01/02
1.8K0
OpenCV 2.4.9 支持向量机(SVM)说明
OpenCV导向滤波(引导滤波)实现(Guided Filter)代码,以及使用颜色先验算法去雾
 论文下载地址:http://research.microsoft.com/en-us/um/people/jiansun/papers/GuidedFilter_ECCV10.pdf
流川疯
2019/01/18
2.6K0
手眼标定算法Tsai-Lenz代码实现(Python、C++、Matlab)
上一节介绍了手眼标定算法Tsai的原理,这一节介绍算法的代码实现,分别有Python、C++、Matlab版本的算法实现方式。
全栈程序员站长
2022/08/31
1.6K0
图像特征点|SIFT特征点位置与方向
关键点是由DOG空间的局部极值点组成的,关键点的初步探查是通过同一组内各DoG相邻两层图像之间比较完成的。为了寻找DoG函数的极值点,每一个像素点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图下图所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。
小白学视觉
2019/10/23
2.1K0
OpenCV stereo matching 代码 matlab实现视差显示
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213,
流川疯
2019/01/18
1.8K0
OpenCV两种畸变校正模型源代码分析以及CUDA实现
图像算法中会经常用到摄像机的畸变校正,有必要总结分析OpenCV中畸变校正方法,其中包括普通针孔相机模型和鱼眼相机模型fisheye两种畸变校正方法。 普通相机模型畸变校正函数针对OpenCV中的cv::initUndistortRectifyMap(),鱼眼相机模型畸变校正函数对应OpenCV中的cv::fisheye::initUndistortRectifyMap()。两种方法算出映射Mapx和Mapy后,统一用cv::Remap()函数进行插值得到校正后的图像。 1. FishEye模型的畸变校正。
一棹烟波
2018/01/12
4.4K0
OpenCV两种畸变校正模型源代码分析以及CUDA实现
opencv相机标定示例代码
https://blog.csdn.net/dcrmg/article/details/52939318
用户1148525
2019/05/27
1.9K0
OpenCV角点检测源代码分析(Harris和ShiTomasi角点)
OpenCV中常用的角点检测为Harris角点和ShiTomasi角点。 以OpenCV源代码文件 .\opencv\sources\samples\cpp\tutorial_code\TrackingMotion\cornerDetector_Demo.cpp为例,主要分析其中的这两种角点检测源代码。角点检测数学原理请参考我之前转载的一篇博客 http://www.cnblogs.com/riddick/p/7645904.html,分析的很详细,不再赘述。本文主要分析其源代码: 1. Harris角点检
一棹烟波
2018/03/19
2K0
OpenCV角点检测源代码分析(Harris和ShiTomasi角点)
推荐阅读
相关推荐
《学习opencv》笔记——矩阵和图像处理——cvGEMM,cvGetCol,cvGetCols and cvGetDiag
更多 >
领券
社区富文本编辑器全新改版!诚邀体验~
全新交互,全新视觉,新增快捷键、悬浮工具栏、高亮块等功能并同时优化现有功能,全面提升创作效率和体验
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文