我尝试在Google Colab Pro GPU (内存:25 me,磁盘:147 me)上使用更快的RCNN运行TF对象检测模型的演示,但失败了,并给出以下错误:
Tensorflow/core/common_runtime/bfc_allocator.cc:456] Allocator (GPU_0_bfc) ran out of memory trying to allocate 7.18GiB (rounded to 7707033600)requested by op MultiLevelMatMulCropAndResize/MultiLevelRoIAlign/AvgPool-0-TransposeNHWCToNCHW-LayoutOptimizer
If the cause is memory fragmentation maybe the environment variable 'TF_GPU_ALLOCATOR=cuda_malloc_async' will improve the situation.
然后它会给我这些统计数据:
I tensorflow/core/common_runtime/bfc_allocator.cc:1058] Sum Total of in-use chunks: 7.46GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:1060] total_region_allocated_bytes_: 15034482688 memory_limit_: 16183459840 available bytes: 1148977152 curr_region_allocation_bytes_: 8589934592
I tensorflow/core/common_runtime/bfc_allocator.cc:1066] Stats:
Limit: 16183459840
InUse: 8013051904
MaxInUse: 8081602560
NumAllocs: 6801
MaxAllocSize: 7707033600
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0
和
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[2400,1024,28,28] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node MultiLevelMatMulCropAndResize/MultiLevelRoIAlign/AvgPool-0-TransposeNHWCToNCHW-LayoutOptimizer}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.
[Op:__inference__dummy_computation_fn_32982]
我真的不明白为什么在25 7GB的系统上只分配7 7GB的内存就会用完?我怎么才能修复它?以下是我用于此任务的配置文件:
# Faster R-CNN with Resnet-50 (v1)
# Trained on COCO, initialized from Imagenet classification checkpoint
# Achieves -- mAP on COCO14 minival dataset.
# This config is TPU compatible.
model {
faster_rcnn {
num_classes: 7
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 640
max_dimension: 640
pad_to_max_dimension: true
}
}
feature_extractor {
type: 'faster_rcnn_resnet50_keras'
batch_norm_trainable: true
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
share_box_across_classes: true
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
use_static_shapes: true
use_matmul_crop_and_resize: true
clip_anchors_to_image: true
use_static_balanced_label_sampler: true
use_matmul_gather_in_matcher: true
}
}
train_config: {
batch_size: 8
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
num_steps: 25000
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .04
total_steps: 25000
warmup_learning_rate: .013333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "faster_rcnn_resnet50_v1_640x640_coco17_tpu-8/checkpoint/ckpt-0"
fine_tune_checkpoint_type: "detection"
data_augmentation_options {
random_horizontal_flip {
}
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
use_bfloat16: true # works only on TPUs
}
train_input_reader: {
label_map_path: "label_map.pbtxt"
tf_record_input_reader {
input_path: "train.record"
}
}
eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "label_map.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "test.record"
}
}
发布于 2021-07-11 18:55:11
我意识到这是图像在样本大小中占用太多内存的问题,根据https://github.com/tensorflow/models/issues/1817,所以我将批处理大小改为2,它起作用了
https://stackoverflow.com/questions/68338674
复制相似问题