首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
技术百科首页 >K-最近邻算法 >K-最近邻算法是如何工作的?

K-最近邻算法是如何工作的?

词条归属:K-最近邻算法

K-最近邻算法的工作原理如下:

输入

K-最近邻算法的输入包括一个带有标签的训练数据集和一个新的数据点(待预测数据点)。

距离度量

K-最近邻算法需要计算训练数据集中每个数据点与待预测数据点之间的距离。常用的距离度量方法包括欧几里得距离、曼哈顿距离和余弦相似度等。

选择K值

K-最近邻算法需要选择一个K值来确定最终的预测结果。K值通常是一个奇数,可以通过交叉验证等方法来选择。

查找最近的K个邻居

K-最近邻算法会查找训练数据集中距离待预测数据点最近的K个邻居,这些邻居的标签将用于预测待预测数据点的标签。

预测标签

对于分类问题,K-最近邻算法会将K个邻居中出现最多的标签作为预测结果。对于回归问题,K-最近邻算法会将K个邻居的输出值的平均值作为预测结果。

输出

K-最近邻算法的输出是预测结果,即待预测数据点的标签或输出值。

相关文章
简单易学的机器学习算法——K-近邻算法
一、近邻算法(Nearest Neighbors) 1、近邻算法的概念 近邻算法(Nearest Neighbors)是一种典型的非参模型,与生成方法(generalizing method)不同的
felixzhao
2018-03-14
8810
k-近邻算法简介及api的初步使用
K-紧邻算法(K Nearest Neighbor,简称 KNN)Cover 与 Hart 提出的机器学习中比较经典的算法之一,简单定义如下:
繁依Fanyi
2023-05-07
1850
KNN算法与案例:K-近邻的应用与优化
K-近邻算法(K-Nearest Neighbors, KNN)是一种简单而强大的监督学习算法,广泛应用于分类和回归任务。它的核心思想是通过计算样本之间的距离,将一个数据点的类别或数值预测为其最邻近的K个点的类别或数值。KNN算法具有直观的实现和较强的实际应用能力,尤其在数据较小、类别之间具有明显区分时,表现非常出色。
LucianaiB
2025-01-19
4940
机器学习中K-近邻算法的案例实践
人类一直有一个梦想,造一个智能机器,让机器帮助我们实现自己的心愿。就像小时候看的动画片《葫芦娃》,如意如意随我心意快快显灵,如意如意,一听这个名字就知道它是代表吉祥的物件,寓意“如君所愿”。随着科技的发展,机器学习(Machine Learning)逐渐成熟得到行业应用。
机器思维研究院
2019-06-10
9640
使用k-近邻算法改进约会网站的配对效果
(1) 收集数据: 提供文本文件。 (2) 准备数据: 使用python解析文本文件。 (3) 分析数据: 使用 Matplotlib画二维扩散图 。 (4) 训练算法: 此步驟不适用于k-近邻算法。 (5) 测试算法: 使用海伦提供的部分数据作为测试样本。 测试样本和非测试样本的区别在于:测试样本是已经完成分类的数据,如果预测分类与实际类别不同,则标记为一个错误。 (6) 使用算法: 产生简单的命令行程序,然后可以输入一些特征数据以判断对方是否为自己喜欢的类型。
benym
2022-07-14
4540
点击加载更多
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
领券