超全!基于Java的机器学习项目、环境、库...

原文标题:Java Machine Learning

作者:Jason Brownlee

翻译:杨金鸿

校对:丁楠雅

本文长度为3000字,建议阅读8分钟

本文介绍了主要的平台和开放源码的Java机器学习库。

你是一名希望开始或者正在学习机器学习的Java程序员吗?

利用机器学习编写程序是最佳的学习方式。你可以从头开始编写算法,但是利用现有的开源库,你可以取得更大的进步。

本文介绍了主要的平台和开放源码的机器学习库。你可以使用这些机器学习库。

环境

本节描述了用于机器学习的Java环境或工作域。它们提供了用于执行机器学习任务的图形用户界面,还提供了用于开发自己应用程序的Java API。

  • WEKA

怀卡托环境知识分析(Weka)( https:// www.cs.waikato.ac.nz/ml/weka/)是一个由新西兰怀卡托大学开发的机器学习平台。提供Java的图形用户接口,命令行接口和Java API接口。它可能是最流行的Java机器学习库,也是开始或练习机器学习的好地方。

  • KNIME

康斯坦茨信息挖掘(KNIME)(https://www.knime. com/)是德国康斯坦茨大学开发的一个分析和报告平台。它的研发重点是药物研究,但已扩展到一般商业智能。它提供一个图形用户接口(基于Eclipse)和Java API。

  • 快速挖掘

快速挖掘(https://rapidminer.com/)由德国多特蒙德应用技术大学研发。它提供了一个GUI和一个Java API来开发自己的应用程序。还提供了数据处理、可视化和建模的机器学习算法。

  • ELKI

ELKI是一个用于开发由索引结构支持的KDD-应用程序的环境(https://elki-project.github.io/),它是由德国慕尼黑的路德维希马克西米利安大学用Java语言开发的一款数据挖掘工作平台。它的重点是在关系型数据库中处理数据,例如异常值检测和分类(基于距离函数方法)。它提供了一个迷你GUI、命令行接口和Java API。

其实本文列出的每个项目都带有Java API库。不过在这一节中列出的这些项目仅提供了一个Java API。从狭义上来说,它们是机器学习库。

  • Java-ML

Java机器学习库(Java-ML)(http://java-ml.sourceforge.net/)提供了在Java中实现的机器学习算法的集合。它为每一种算法提供了标准接口,没有UI(用户界面),也没有引用相关的科学文献来进一步阅读。它包括数据操作、群集、特性选择和分类的方法。值得注意的是,截止本文成稿为止,它的最新一个版本是在2012年。

  • JSAT

Java统计分析工具(JSAT)(https://github.com /EdwardRaff/JSAT/tree/master)提供了一个纯Java语言实现的标准机器学习算法,用于解决中等规模的问题。JSAT的作者称他开发的这个库部分是为了进行自我学习,部分是为了完成工作。尽管如此,算法的列表还是令人印象深刻的。它包括分类、回归、合集、聚类和特征选择方法。

Java大数据项目

本节列出了适合大数据的Java项目,例如机器集群。

  • Mahout (Hadoop)

Apache Mahout(https://mahout.apache.org/)提供了用于实现Apache Hadoop平台(分布式映射化简)的机器学习算法。该项目主要关注集群和分类算法,一个流行的应用程序驱动实现是它在推荐系统的协作筛选中使用。还包括在单个节点上运行算法的引用实现。

  • MLlib (Spark)

Apache机器学习库(MLlib)(http://spark. apache.org/mllib/)提供了用于Apache Spark平台(HDFS,而不是映射化简)机器学习算法的实现。尽管Java库和平台支持Java、Scala和Python绑定。这个库是新的,算法的列表很短,但是增长很快。

  • MOA

大规模在线分析(MOA)(https://moa.cms. waikato.ac.nz/)是一个开源平台,由新西兰怀卡托大学的数据流挖掘设计。和Weka相同(开发在相同的地方),提供一个GUI,命令行接口和Java API。它提供了一长串的算法,重点是分类和支持离群检测,解决概念漂移。MOA使用先进的数据挖掘和机器学习系统(ADAMS)(https://adams.cms.waikato.ac.nz/)管理工作流,开发也在相同的地方。

  • SAMOA

可扩展的高级在线分析(SAMOA)(http://samoa-project.net/)是一个由雅虎开发的分布式流媒体机器学习框架。它的设计运行在Apache Storm 和 Apache S4上。系统可以利用MOA项目提供的算法来完成分类等任务。

自然语言处理

本节将致力于Java库和项目,用于解决来自机器学习的子领域的问题,称之为自然语言处理(NLP)。

自然语言处理不是我的领域,所以我仅仅指出关键的库。

  • OpenNLP: Apache OpenNLP(http://opennlp. apache.org/)是处理自然语言文本的工具包,它为诸如标记化、分割和实体提取等自然语言处理任务提供了方法。
  • LingPipe:LingPipe(http://alias-i.com/lingpipe/)是计算语言学的一个工具包,包括了主题分类、实体提取、聚类和情绪分析的方法。
  • GATE: 文本工程一般结构(GATE)(http://gate.ac.uk/)是一个开源的用于文本处理的库。它提供了针对不同用例子项目的数组。
  • MALLET:机器学习语言工具包(MALLET)( http://mallet.cs.umass.edu/)是一种Java工具包,用于统计自然语言处理、文档分类、集群、主题建模和信息提取。

计算机视觉

本节列出了机器学习子领域库,称之为计算机视觉(VC)。

计算机视觉不是我熟悉的领域,所以我仅仅指出关键的库。

  • BoofCV:BoofCV(http://boofcv.org/index.php?title=Main_Page)是一个用于计算机视觉和机器人应用的开放源码库。它支持图像处理、特征、几何视觉、校准、识别和图像数据输入等功能。

深度学习

随着深度学习方法和硬件的快速发展,神经网络又重新流行起来。本节列出了用于处理神经网络和深度学习的关键Java库。

  • Encog:Encog(http://www.heatonresearch.com/encog)是一个机器学习库,提供了诸如SVM、经典神经网络、遗传编程、贝叶斯网络、HMM和遗传算法的算法。
  • Deeplearning4j:Deeplearning4j(http://deeplearning4j.org/)被认为是一个用Java编写的商业级的深度学习库。它被描述为与Hadoop兼容并提供了一些算法,包括受限的Boltzmann机,深层的信念网络和堆叠的降噪自动编码器。

总结

在这篇文章中,当我们在Java中选择一个用于机器学习的库或平台时,我们已经接触到了大项目名称选项。这些是倍受学习者欢迎的项目,但绝不只这些列出来的。比如:看一下MLOSS.org (http://mloss.org/software/language/java/)上的这个页面,(截止本文时)它列出了71个基于java的开源机器学习项目。这是一件很重要的工作,我相信GitHub和SourceForge还有更多的工作要做。

学习者的关键是要认真考虑自己的项目和需求。从一个库或者一个平台中找出你需要的东西,然后选择和学习一个最适合自己的项目。

原文链接:

https://machinelearningmastery.com/java-machine-learning/

编辑:黄继彦

杨金鸿,北京护航科技有限公司员工,在业余时间喜欢翻译一些技术文档。喜欢阅读有关数据挖掘、数据库之类的书,学习java语言编程等,希望能在数据派平台上熟识更多爱好相同的伙伴,今后能在数据科学的道路上走的更远,飞的更远。

原文发布于微信公众号 - 数据派THU(DatapiTHU)

原文发表时间:2017-12-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

【AI芯展开推理战】赛灵思最新深度神经网络推理器xDNN参数曝光

目前来看,FPGA可能没有像一些人预期的那样在深度学习的训练空间中占据一席之地,但AI推理的低功耗、高频率需求非常适合可重复编程硬件的性能曲线。

19830
来自专栏新智元

开源深度学习平台 TensorFlow、Caffe、MXNet……哪个最适合你

【新智元导读】本文选自开源深度学习项目 Deeplearning4j (DL4J)博客,文章虽然着重介绍自家产品,但内容仍然值得借鉴。与其他项目相比,DL4J ...

2K60
来自专栏大数据文摘

用Python进行数据可视化的10种方法

47750
来自专栏奇点大数据

入门深度学习应该学什么

最近被人问的最多的一个问题是“我想入门深度学习,我应该学些什么”。 老实说,这个问题不是那么好回答,毕竟每个人的知识背景和技能背景实在是太不一样了。如果要假设...

39970
来自专栏用户2442861的专栏

DL4J与Torch、Theano、Caffe、TensorFlow的比较

https://deeplearning4j.org/cn/compare-dl4j-torch7-pylearn

36220
来自专栏玉树芝兰

如何高效读论文?

(由于微信公众号外部链接的限制,文中的部分链接可能无法正确打开。如有需要,请点击文末的“阅读原文”按钮,访问可以正常显示外链的版本。)

12510
来自专栏PPV课数据科学社区

不懂这几个问题,怎么学好数据挖掘!

关键词:数据挖掘、DataMining、OLAP、Data Warehousing 正文如下: 1、DataMining和统计分析有什么不同? 硬要去区分Dat...

36250
来自专栏数据猿

【案例】中国人民银行——结合大数据和复杂网络技术实现企业关联关系计算及图谱展示

数据猿导读 随着大数据处理技术的逐步成熟和广泛应用,金融机构根据业务发展需要,开始尝试采用大数据和复杂网络技术来建立便捷性、直观性和快速反应的企业关联查询生产系...

54950
来自专栏AI研习社

2017 深度学习框架发展大盘点——迎来 PyTorch,告别 Theano

深度学习是机器学习中一种基于对数据进行表征学习的方法,作为当下最热门的话题,谷歌、Facebook、微软等巨头纷纷围绕深度学习做了一系列研究,一直在支持开源深度...

36760
来自专栏用户画像

推荐系统的召回

版权声明:本文为博主-姜兴琪原创文章,未经博主允许不得转载。 https://blog.csdn.net/jxq0816/article/details...

67130

扫码关注云+社区

领取腾讯云代金券