我在将回调应用于Keras超参数优化对象时遇到了困难。下面是我运行的代码:
from keras.callbacks import TensorBoard, EarlyStopping
%load_ext tensorboard
BATCH_SIZE = 32
time_stamp = time.time()
tensorboard = TensorBoard(log_dir = " graphs/{}".format(time_stamp))
checkpoint = ModelCheckpoint(filepath = r"D:\Uni work\...\CNN.hdf5" , monitor = 'val_accuracy', verbose = 1, save_best_only = True )
early_stopping = EarlyStopping( monitor="val_loss" , patience= 3, verbose=2)
tuner = BayesianOptimization(build_model, objective = "val_accuracy", max_trials = 30, num_initial_points=2, project_name ="audio_classifier")
tuner.search(x = train_X, y=y_cat_encoded, epochs=35, callbacks = early_stopping, batch_size = BATCH_SIZE, validation_data = (validation_X, y_validation_cat_encoded))
虽然我想应用tensorboard和检查点回调,但它只是通过传递早期停止回调而失败。我得到以下错误:
C:\Anaconda\envs\test\lib\site-packages\kerastuner\engine\tuner.py in _deepcopy_callbacks(self, callbacks)
277 callbacks = copy.deepcopy(callbacks)
278 except:
--> 279 raise ValueError(
280 'All callbacks used during a search '
281 'should be deep-copyable (since they are '
ValueError: All callbacks used during a search should be deep-copyable (since they are reused across trials). It is not possible to do `copy.deepcopy(<tensorflow.python.keras.callbacks.EarlyStopping object at 0x000001802D138100>)
我不熟悉深度可复制这一术语,以及它在错误代码方面的暗示。有没有人熟悉如何解决这个问题?
发布于 2022-05-23 21:47:04
回调应该是一个列表吗?
回调= early_stopping
https://stackoverflow.com/questions/67362128
复制相似问题