前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >图像处理之灰度模糊图像与彩色清晰图像的变换

图像处理之灰度模糊图像与彩色清晰图像的变换

作者头像
码科智能
发布于 2018-01-02 12:42:02
发布于 2018-01-02 12:42:02
2.7K0
举报

  针对模糊图像的处理,个人觉得主要分两条路,一种是自我激发型,另外一种属于外部学习型。接下来我们一起学习这两条路的具体方式。

第一种 自我激发型

  基于图像处理的方法,如图像增强和图像复原,以及曾经很火的超分辨率算法。都是在不增加额外信息的前提下的实现方式。 1. 图像增强

  图像增强是图像预处理中非常重要且常用的一种方法,图像增强不考虑图像质量下降的原因,只是选择地突出图像中感兴趣的特征,抑制其它不需要的特征,主要目的就是提高图像的视觉效果。先上一张示例图:

  图像增强中常见的几种具体处理方法为:

  1. 直方图均衡   在图像处理中,图像直方图表示了图像中像素灰度值的分布情况。为使图像变得清晰,增大反差,凸显图像细节,通常希望图像灰度的分布从暗到亮大致均匀。直方图均衡就是把那些直方图分布不均匀的图像(如大部分像素灰度集中分布在某一段)经过一种函数变换,使之成一幅具有均匀灰度分布的新图像,其灰度直方图的动态范围扩大。用于直方均衡化的变换函数不是统一的,它是输入图像直方图的积分,即累积分布函数。
  2. 灰度变换   灰度变换可使图像动态范围增大,对比度得到扩展,使图像清晰、特征明显,是图像增强的重要手段之一。它主要利用图像的点运算来修正像素灰度,由输入像素点的灰度值确定相应输出像素点的灰度值,可以看作是“从像素到像素”的变换操作,不改变图像内的空间关系。像素灰度级的改变是根据输入图像f(x,y)灰度值和输出图像g(x,y)灰度值之间的转换函数g(x,y)=T[f(x,y)]进行的。   灰度变换包含的方法很多,如逆反处理、阈值变换、灰度拉伸、灰度切分、灰度级修正、动态范围调整等。
  3. 图像平滑   在空间域中进行平滑滤波技术主要用于消除图像中的噪声,主要有邻域平均法、中值滤波法等等。这种局部平均的方法在削弱噪声的同时,常常会带来图像细节信息的损失。   邻域平均,也称均值滤波,对于给定的图像f(x,y)中的每个像素点(x,y),它所在邻域S中所有M个像素灰度值平均值为其滤波输出,即用一像素邻域内所有像素的灰度平均值来代替该像素原来的灰度。   中值滤波,对于给定像素点(x,y)所在领域S中的n个像素值数值{f1,f2,…,fn},将它们按大小进行有序排列,位于中间位置的那个像素数值称为这n个数值的中值。某像素点中值滤波后的输出等于该像素点邻域中所有像素灰度的中值。中值滤波是一种非线性滤波,运算简单,实现方便,而且能较好的保护边界。
  4. 图像锐化   采集图像变得模糊的原因往往是图像受到了平均或者积分运算,因此,如果对其进行微分运算,就可以使边缘等细节信息变得清晰。这就是在空间域中的图像锐化处理,其的基本方法是对图像进行微分处理,并且将运算结果与原图像叠加。从频域中来看,锐化或微分运算意味着对高频分量的提升。常见的连续变量的微分运算有一阶的梯度运算、二阶的拉普拉斯算子运算,它们分别对应离散变量的一阶差分和二阶差分运算。

2. 图像复原

  其目标是对退化(传播过程中的噪声啊,大气扰动啊好多原因)的图像进行处理,尽可能获得未退化的原始图像。如果把退化过程当一个黑匣子(系统H),图片经过这个系统变成了一个较烂的图。这类原因可能是光学系统的像差或离焦、摄像系统与被摄物之间的相对运动、电子或光学系统的噪声和介于摄像系统与被摄像物间的大气湍流等。图像复原常用二种方法。当不知道图像本身的性质时,可以建立退化源的数学模型,然后施行复原算法除去或减少退化源的影响。当有了关于图像本身的先验知识时,可以建立原始图像的模型,然后在观测到的退化图像中通过检测原始图像而复原图像。 3. 图像超分辨率   一张图我们想脑补细节信息好难,但是相似的多幅图我们就能互相脑洞了。所以,我们可以通过一系列相似的低分辨图来共同脑补出一张高清晰图啊,有了这一张犯罪人的脸,我就可以画通缉令了啊。。。   超分辨率复原技术的目的就是要在提高图像质量的同时恢复成像系统截止频率之外的信息,重建高于系统分辨率的图像。继续说超分辨,它其实就是根据多幅低质量的图片间的关系以及一些先验知识来重构一个高分辨的图片。示例图如下:

第二种 外部学习型

  外部学习型,就如同照葫芦画瓢一样的道理。其算法主要是深度学习中的卷积神经网络,我们在待处理信息量不可扩充的前提下(即模糊的图像本身就未包含场景中的细节信息),可以借助海量的同类数据或相似数据训练一个神经网络,然后让神经网络获得对图像内容进行理解、判断和预测的功能,这时候,再把待处理的模糊图像输入,神经网络就会自动为其添加细节,尽管这种添加仅仅是一种概率层面的预测,并非一定准确。

  本文介绍一种在灰度图像复原成彩色RGB图像方面的代表性工作:《全局和局部图像的联合端到端学习图像自动着色并且同时进行分类》。利用神经网络给黑白图像上色,使其变为彩色图像。稍作解释,黑白图像,实际上只有一个通道的信息,即灰度信息。彩色图像,则为RGB图像(其他颜色空间不一一列举,仅以RGB为例讲解),有三个通道的信息。彩色图像转换为黑白图像极其简单,属于有损压缩数据;反之则很难,因为数据不会凭空增多。

  搭建一个神经网络,给一张黑白图像,然后提供大量与其相同年代的彩色图像作为训练数据(色调比较接近),然后输入黑白图像,人工智能按照之前的训练结果为其上色,输出彩色图像,先来看一张效果图:

  1. 本文工作 •  用户无干预的灰度图像着色方法。 •  一个新颖的端到端网络,联合学习图像的全局和局部特征。 •  一种利用分类标签提高性能的学习方法。 •  基于利用全局特征的风格转换技术。 •  通过用户研究和许多不同的例子深入评估模型,包括百年的黑白照片。
  2. 着色框架   模型框架包括四个主要组件:低级特征提取网络,中级特征提取网络,全局特征提取网络和着色网络。 这些部件都以端对端的方式紧密耦合和训练。 模型的输出是图像的色度,其与亮度融合以形成输出图像。
  1. 与另外两个工作对比 • Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning Representations for Automatic Colorization. In ECCV 2016. •Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful Image Colorization. In ECCV 2016.

参考文献:

网页: http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/extra.html

代码: https://github.com/satoshiiizuka/siggraph2016_colorization

论文2: http://richzhang.github.io/colorization/

在线demo: http://demos.algorithmia.com/colorize-photos/

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2016年12月24日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
图像处理期末总结
1. 图像概念: 是对客观对象的一种相似性的,生动性的描述或写真。是对客观对象的表示, 包含了被描述对象的有关信息,是人类最主要的信息源,一个人 75%的信息获取来自视觉。 2. 图像处理的三个层次: 狭义图像:处理从图像到图像的过程(像素级); 图像分析:从 图像到数值或符号的过程(符号级); 图像理解:以客观世界分析客观世界(人工智能级) 3. 图像处理系统包括 采集,显示,存储,通信,处理和分析 五个模块 4. 数字图像处理 是指将图像信号转换成数字信号并利用计算机对其进行处理的过程 5.数据图像采样: 将空间上连续的图像变换成离散点的操作 6.数字图像的过程: 图像数字化是将一幅画面转化为计算机能处理的形式。 7. 数字图像处理的应用: 在生物医学中的应用,遥感航天,工业,军事公安领域,其他 8. 采样: 将空间上连续的图像变换成离散点的操作。 参数:采样间隔,采样孔径 9.采样孔径形状和大小与采样方式有关。 通常有 圆形,正方形,长方形,椭圆形 10. 采样方式 指采样间隔确定后,相邻像素间的位置关系:分开、相连、重叠 11. 量化: 将像素灰度转换成离散的整数值的过程。 5. 图像的数据量与采样间隔和量化等级有关 12. 灰度直方图: 反映的是一幅图像中各灰度级像素出现的频率之间的关系 频率 vi=ni/n 13. 直方图的应用: 1 判断图像量化是否正确 2 确定图像二值化的阈值 3 计算图像中物体 的面积 4 计算图像信息量 H H 公式 14. 图像增强目的: 1.采用一系列技术改善图像的视觉效果,提高图像的清晰度; 2.将图像 转换成一种更适合与人或机器进行分析处理的形式。 15. 卷积定理: 空间域;频率域。 空间域增强:直接对图像像素灰度进行操作 频率域增强:对图像经傅立叶变换后频谱成分进行操作,然后经傅立叶逆变换获得所需结果 16. 图像处理具体形式: 局部处理;迭代处理;跟踪处理;窗口处理和模板处理;串行处理和并 行处理。 局部处理: 在对输入图像进行处理时,计算某一输出像素 JP(i,j)值由输入图像 IP(i,j) 像素的小邻域 N[IP(i,j)]中的像素值确定。 17.图像的移动平均平滑法和空间域锐化 局部运算-图像锐化:图像锐化就是增强图像的边缘或轮廓 局部运算-图像平滑法:(邻域平均法或移动平均法)是一种直接在空间域进行平滑处理的 技术。假设图像由很多灰度恒定的小块组成,相邻像素间存在很高的空间相关性,噪声则是 统计独立的,可用像素邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平 滑。 18. 点处理: 在局部处理中,当输出值 JP(I,j)仅与 IP(I,j)像素灰度有关的处理。 对比度 增强,图像二值化,局部统计法 点运算-灰度变换: 灰度变换可使图像动态范围增大,图像对比度扩展,图像变清晰,特征 明显,是图像增强的重要手段之一 迭代处理: 反复对图像进行某种运算直至满足给定的条件,从而得到输出图像的处理形式。 邻域处理: 在对输入图像进行处理时,计算某一输出像素 JP(i,j)值由输入图像 IP(i,j) 像素的小领域 N[IP(i,j)]中的像素值确定的处理形式。 1 19. 图像数字化包括采样和量化两个过程 20. 图像变换的目的: 1 使图像处理问题简化 2 有利于图像特征提取 3 有助于从概念上增强 对图像信息的理解 21. 离散傅立叶性质:周期性和共轭对称性;分离性;平均值;离散卷积定理;分配律 22.直方图修正法:大多数自然图像由于其灰度分布集中在较窄的区间,引起图像细节不够 清晰。采用直方图修整后可使图像的灰度间距拉开或使灰度分布均匀,从而增大反差,使图 像细节清晰,达到增强图像目的。直方图修正法通常有直方图均衡化及直方图规定化两类。 23. 直方图均衡化:通过对原图像进行某种变换使原图像的灰度直方图修正为均匀的直方图 的一种方法。 作用:能够自动增强图像的对比度;得到了全局均衡化的直方图,即均匀分 布;但效果不易控制。 24. 图像平滑: 任何一幅原始图像,在获取和传输等过程中,会受到各种噪声的干扰,使图 像质量下降,图像模糊,特征消失,对图像分析不利。为抑制噪声改善图像质量所进行的处 理叫做图像平滑或去噪。图像平滑是通过积分过程使图像边缘模糊。 25. 图像退化:图像在形成、传输和记录过程中,由于成像系统、传输介质和设备不完善, 导致图像质量下降。该现象称为图像退化。图像退化典型表现为图像模糊、失真、有噪声等。 26. 图像复原:图像的复原就是要尽可能的回复退化图像的本来面目,它是沿图像退化的逆 过程恢复图像。 过程:弄清退化原因-建立退化模型-反向推演-恢复图像。 准则:最小均方 准则、加权均方准则、最大熵准则 27. 图像复原与图像增强区别:二者
鲲志说
2025/04/07
580
图像处理期末总结
手背静脉识别的图像处理算法
手背静脉识别技术作为一种全新的特征识别技术,相比于传统的生物识别技术(如指纹识别)具有许多明显的优势,然而对于该技术的研究尚处于刚刚起步阶段,使用计算机来直接进行静脉识别与身份匹配仍然较为困难,为了方便后续特征识别,提高静脉识别的准确度和优越性,有必要对获取的静脉图像进行一系列处理,得到静脉的骨架结构。 题目主要要求为: 1.对采集图像进行背景去除,取得手背部分; 2.计算采集手背的质心并提取手背有效区域; 3.提取手背静脉走势; 4.对提取的静脉进行细化处理,去除毛刺; 5.改进算法,提高程序的通用性和适普性; 6.在图像分割上尝试不同的方法,并比较结果的好坏。
全栈程序员站长
2022/08/29
9131
手背静脉识别的图像处理算法
【图像处理】图像去雾的前世今生
其实之前对图像去雾也没有什么深入的理解,只是了解,实现过一些传统的图像去雾方法而已。个人感觉,在CNN模型大流行的今天,已经有很多人忽略了传统算法的发展,以至于你今天去搜索10年前的传统去雾算法或许根本找不到相关资料了,或许这就是网络中的围城吧。今天周六有空来整理一下我所了解到的图像去雾技术的发展,并尝试做一个详细点的综述。
zenRRan
2020/03/23
2.8K0
【图像处理】图像去雾的前世今生
数字图像处理学习笔记(十六)——彩色图像处理
当一束白光通过一个玻璃棱镜时,出现的光束 不是白光,而是由一端为紫色到另一端为红色的 连续彩色谱组成
荣仔_最靓的仔
2021/02/02
2.4K0
数字图像处理学习笔记(十六)——彩色图像处理
数字图像处理必备基本知识
数字图像,又称为数码图像或数位图像,是二维图像用有限数字数值像素的表示。数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。
小白学视觉
2022/02/14
1.3K1
数字图像处理必备基本知识
数字图像处理基本知识
数字图像,又称为数码图像或数位图像,是二维图像用有限数字数值像素的表示。数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。
小白学视觉
2019/11/18
1.4K0
数字图像处理的基本原理和常用方法
  数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于 20 世纪 50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于 20 世纪 60 年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
bear_fish
2018/09/19
6.4K0
数字图像处理的基本原理和常用方法
图像处理算法 面试题
其主要用于边缘检测,在技术上它是以离散型的差分算子,用来运算图像亮度函数的梯度的近似值, Sobel算子是典型的基于一阶导数的边缘检测算子,由于该算子中引入了类似局部平均的运算,因此对噪声具有平滑作用,能很好的消除噪声的影响。Sobel算子对于象素的位置的影响做了加权,与Prewitt算子、Roberts算子相比因此效果更好。Sobel算子包含两组3×3的矩阵,分别为横向及纵向模板,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。缺点是Sobel算子并没有将图像的主题与背景严格地区分开来,换言之就是Sobel算子并没有基于图像灰度进行处理,由于Sobel算子并没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。
全栈程序员站长
2022/08/30
7730
【图像篇】opencv图像处理(一)---图像基础知识
伴随着人类社会历程的不断向前推进,先进的科技就一直承载着人类社会的进步,特别是近年来日渐成熟的AI技术,深远地改变了我们熟悉的各个领域。我们公众号时刻紧跟当前社会发展潮流,考虑到,图像处理技术作为人工智能领域中计算机视觉(CV)的重要基础知识,同时可能也是粉丝朋友们感兴趣的地方,为此,小编决定新开一个专栏——opencv图像处理,期待能够帮助更多想要学习AI技术的小伙伴们,当然,这些知识对于大学三四年级的同学也非常有用哦,期待能够带给大家更多的快乐,我们,一直在前行。
用户5410712
2022/06/01
6030
【图像篇】opencv图像处理(一)---图像基础知识
【计算机视觉】基础图像知识点整理
在数字图像中,各像素点的亮度或色彩信息,即每个像素点的取值称为灰度,一幅图像所包含的灰度总数称为灰度级。
zstar
2022/06/14
1.5K0
【计算机视觉】基础图像知识点整理
图像处理基础知识--建议掌握
模拟图像,又称连续图像,是指在二维坐标系中连续变化的图像,即图像的像点是无限稠密的,同时具有灰度值(即图像从暗到亮的变化值)。
Color Space
2022/09/26
1.7K0
数字图像处理学习笔记(十)——空间滤波
其中,m=2a+1,n=2b+1, w(s,t)是滤波器系数,f(x,y)是图像值。一般来说最小尺寸是3。
荣仔_最靓的仔
2021/02/02
2.6K0
数字图像处理学习笔记(十)——空间滤波
大神带你玩转matlab图像处理(四)
均衡化:经过均衡化处理的图像,像素占有更多的灰度级并且分布更均匀,这样的图像具有更高的对比度
巴山学长
2020/03/10
9480
大神带你玩转matlab图像处理(四)
【计算机视觉】基础图像知识点整理
在数字图像中,各像素点的亮度或色彩信息,即每个像素点的取值称为灰度,一幅图像所包含的灰度总数称为灰度级。
zstar
2022/06/09
1.4K0
【计算机视觉】基础图像知识点整理
LabVIEW图像灰度分析与变换(基础篇—4)
图像灰度分析是图像分析中最基本的内容,它使用各种图像灰度分析工具,提取图像或ROI区域内的灰度特征信息。基于对图像灰度的分析测量,可以实现最基本的机器视觉检测系统,如目标存在性检测系统等。
不脱发的程序猿
2021/06/21
2.2K0
LabVIEW图像灰度分析与变换(基础篇—4)
万字长文告诉新手如何学习Python图像处理(上篇完结 四十四) | 「Python」有奖征文
期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~
全栈程序员站长
2022/11/04
2.1K0
万字长文告诉新手如何学习Python图像处理(上篇完结 四十四) | 「Python」有奖征文
数字图像处理知识点总结概述
1.直方图:一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征。图像的灰度直方图就描述了图像中灰度分布情况,能够很直观的展示出图像中各个灰度级所占的多少。图像的灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数:其中,横坐标是灰度级,纵坐标是该灰度级出现的频率。
小白学视觉
2022/09/28
1.7K0
音视频知识图谱 2022.09
前些时间,我在知识星球上创建了一个音视频技术社群:关键帧的音视频开发圈,在这里群友们会一起做一些打卡任务。比如:周期性地整理音视频相关的面试题,汇集一份音视频面试题集锦,你可以看看这个合集:音视频面试题集锦。再比如:循序渐进地归纳总结音视频技术知识,绘制一幅音视频知识图谱,你可以看看这个合集:音视频知识图谱。
关键帧
2022/11/29
4550
音视频知识图谱 2022.09
机器视觉检测中的图像预处理方法
本文以Dalsa sherlock软件为例,一起来了解一下视觉检测中平滑模糊的图像处理方法。
智能算法
2020/08/28
2.6K0
机器视觉检测中的图像预处理方法
利用MATLAB进行图像处理-基础技术与实例
图像处理是计算机科学和工程中一个重要的领域,广泛应用于医疗、工业、安防等多个行业。MATLAB作为一种强大的数学软件,提供了丰富的工具箱和函数,方便进行图像处理。本篇文章将介绍MATLAB图像处理的基础技术,并结合代码实例进行详细解析。
一键难忘
2025/01/13
1960
相关推荐
图像处理期末总结
更多 >
领券
社区富文本编辑器全新改版!诚邀体验~
全新交互,全新视觉,新增快捷键、悬浮工具栏、高亮块等功能并同时优化现有功能,全面提升创作效率和体验
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文