针对模糊图像的处理,个人觉得主要分两条路,一种是自我激发型,另外一种属于外部学习型。接下来我们一起学习这两条路的具体方式。
基于图像处理的方法,如图像增强和图像复原,以及曾经很火的超分辨率算法。都是在不增加额外信息的前提下的实现方式。 1. 图像增强
图像增强是图像预处理中非常重要且常用的一种方法,图像增强不考虑图像质量下降的原因,只是选择地突出图像中感兴趣的特征,抑制其它不需要的特征,主要目的就是提高图像的视觉效果。先上一张示例图:
图像增强中常见的几种具体处理方法为:
2. 图像复原
其目标是对退化(传播过程中的噪声啊,大气扰动啊好多原因)的图像进行处理,尽可能获得未退化的原始图像。如果把退化过程当一个黑匣子(系统H),图片经过这个系统变成了一个较烂的图。这类原因可能是光学系统的像差或离焦、摄像系统与被摄物之间的相对运动、电子或光学系统的噪声和介于摄像系统与被摄像物间的大气湍流等。图像复原常用二种方法。当不知道图像本身的性质时,可以建立退化源的数学模型,然后施行复原算法除去或减少退化源的影响。当有了关于图像本身的先验知识时,可以建立原始图像的模型,然后在观测到的退化图像中通过检测原始图像而复原图像。 3. 图像超分辨率 一张图我们想脑补细节信息好难,但是相似的多幅图我们就能互相脑洞了。所以,我们可以通过一系列相似的低分辨图来共同脑补出一张高清晰图啊,有了这一张犯罪人的脸,我就可以画通缉令了啊。。。 超分辨率复原技术的目的就是要在提高图像质量的同时恢复成像系统截止频率之外的信息,重建高于系统分辨率的图像。继续说超分辨,它其实就是根据多幅低质量的图片间的关系以及一些先验知识来重构一个高分辨的图片。示例图如下:
外部学习型,就如同照葫芦画瓢一样的道理。其算法主要是深度学习中的卷积神经网络,我们在待处理信息量不可扩充的前提下(即模糊的图像本身就未包含场景中的细节信息),可以借助海量的同类数据或相似数据训练一个神经网络,然后让神经网络获得对图像内容进行理解、判断和预测的功能,这时候,再把待处理的模糊图像输入,神经网络就会自动为其添加细节,尽管这种添加仅仅是一种概率层面的预测,并非一定准确。
本文介绍一种在灰度图像复原成彩色RGB图像方面的代表性工作:《全局和局部图像的联合端到端学习图像自动着色并且同时进行分类》。利用神经网络给黑白图像上色,使其变为彩色图像。稍作解释,黑白图像,实际上只有一个通道的信息,即灰度信息。彩色图像,则为RGB图像(其他颜色空间不一一列举,仅以RGB为例讲解),有三个通道的信息。彩色图像转换为黑白图像极其简单,属于有损压缩数据;反之则很难,因为数据不会凭空增多。
搭建一个神经网络,给一张黑白图像,然后提供大量与其相同年代的彩色图像作为训练数据(色调比较接近),然后输入黑白图像,人工智能按照之前的训练结果为其上色,输出彩色图像,先来看一张效果图:
网页: http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/extra.html
代码: https://github.com/satoshiiizuka/siggraph2016_colorization
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有