前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >函数的凹凸性_函数凹凸性与图像

函数的凹凸性_函数凹凸性与图像

作者头像
全栈程序员站长
发布于 2022-09-19 14:21:24
发布于 2022-09-19 14:21:24
5120
举报

大家好,又见面了,我是你们的朋友全栈君。

设函数 f(x) 在区间 I 上有定义,在 I 内任取两点 x1,x2,对任意的 λ(0,1),有 λx1+(1λ)x2(x1,x2)

A1 点坐标 (x1,f(x1))A2 点坐标 (x2,f(x1))A 点坐标 (x,f(x)),于是可以求得

yB=x2xx2x1f(x1)+xx1x2x1f(x2)

λ=x2xx2x1,则

yB=λf(x1)+(1λ)f(x2)

易推出

x=λx1+(1λ)x2

结合图像有

yA<yB

所以

f(x)x2xx2x1f(x1)+xx1x2x1f(x2)

f[λx1+(1λ)x2]λf(x1)+(1λ)f(x2),λ(0,1)

x1x2,上式等号成立。

满足这个性质的函数称为凹函数,凸函数的定义与此类似,不在赘述。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/166973.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
图解AI数学基础 | 微积分与最优化
教程地址:http://www.showmeai.tech/tutorials/83
ShowMeAI
2022/02/25
5970
图解AI数学基础 | 微积分与最优化
工程优化学习笔记
对于凸规划 $ min f(x) $ $ s.t. g_i(x) \leq 0, i=1,2,L,m $
范中豪
2020/02/11
3710
工程优化学习笔记
大学生数学竞赛非数专题二(7)
1单调性 2极值 3最值 4凹凸性、拐点 5作函数图像 6渐近线:水平渐近线、铅直渐近线、斜渐近线
用户9628320
2022/11/23
3720
非数竞赛专题二 (7)
专题二 一元微分学 (7) 2.2.7 导数在几何上的应用 1单调性 2极值 3最值 4凹凸性、拐点 5作函数图像 6渐近线:水平渐近线、铅直渐近线、斜渐近线 2.34 (江苏省2012年竞赛题) 求一个次数最低的多项式 P(x) ,使得它在 x=1 时取极大值 2 ,且 (0,2) 是曲线 y=P(x) 的拐点。 解:设 P^{''}(x)=a(x-2) ,积分一次可得 P^{'}(x)=a\frac{x^2}{2}-2x)+b , 再积分一次,得 P(x)=a(\frac{x^3}{6}-x^2
用户9628320
2022/11/23
5290
ML特训营笔记1
设A = (a_{ij}),B = (b_{ij})是两个m \times n矩阵,则m \times n 矩阵C = c_{ij}) = a_{ij} + b_{ij}称为矩阵A与B的和,记为A + B = C
皮大大
2021/03/02
4930
凸集与凸函数
凸函数(一元)的定义是: 任意属于定义域的两个自变量x1和x2,且对于任意0≤θ≤1,如果函数f(⋅)满足:
为为为什么
2022/08/09
7170
凸集与凸函数
【ML】支持向量机(SVM)从入门到放弃再到掌握
朋友,你通过各种不同的途经初次接触支持向量机(SVM)的时候,是不是会觉得这个东西耳熟能详,感觉大家都会,却唯独自己很难理解? 每一次你的老板或者同仁让你讲解SVM的时候,你觉得你看过这么多资料,使用过这么多次,讲解应该没有问题,但偏偏在分享的时候结结巴巴,漏洞百出? 每一次机器学习相关的面试在问到支持向量机(SVM)的时候,尽管你觉得你都准备好了,可是一次又一次败下阵来,以至于觉得问那些问题的人(是不是脑子有…)是那么的厉害,每一次都能精准发觉到你的不足和漏洞,让你怀疑你掌握的是假的SVM,然后让你怀疑人生? 那还等什么,快来看看这篇文章吧,原价998,现在只要。。。(不好意思,扯偏了。)
全栈程序员站长
2022/09/06
5440
【ML】支持向量机(SVM)从入门到放弃再到掌握
Deep Learning Chapter01:机器学习中线性代数
好久不见,大家好,我是北山啦。机器学习当中需要用到许多的数学知识,如今博主又要继续踏上深度学习的路程,所以现在在网上总结了相关的考研数学和机器学习中常见相关知识如下,希望对大家有所帮助。
北山啦
2022/10/31
4940
Deep Learning Chapter01:机器学习中线性代数
信息率失真函数与平均互信息
Theorem [Rate-Distortion]. 以小于或等于失真 D 去重构无记忆信源所需的最小信源输出 bit/sym 称为率失真函数 (rate-distortion function),用 R(D) 表示, 记为
timerring
2023/04/12
7840
信息率失真函数与平均互信息
大学生数学竞赛非数专题一(8)
今天的题目就到这里了,关于介值定理以及零点定理都是常见的套路,一般证明唯一的话,再加上一个单调性就可以,其次证明极限用夹逼准则,注意放缩法的应用,注意左右夹逼的同一性,这个要进行练习。其次还有极限的求法,列方程求解。单调有界准则重要证明的是单调和有界,单调一般时采用函数或者作差或者相除,再利用常见的不等式进行放缩,有界可以利用假设归纳法或者函数法,求它的值的范围。
用户9628320
2022/11/23
3460
机器学习之从极大似然估计到最大熵原理以及EM算法详解
极大似然估计是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。极大似然原理的直观想法我们用下面例子说明。设甲箱中有99个白球,1个黑球;乙箱中有1个白球.99个黑球。现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的。一般说来,事件A发生的概率与某一未知参数 \theta 有关, \theta 取值不同,则事件A发生的概率P(A|\theta )也不同,当我们在一次试验中事件A发生了,则认为此时的\theta 值应是t的一切可能取值中使P(A|\theta )达到最大的那一个,极大似然估计法就是要选取这样的t值作为参数t的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
大黄大黄大黄
2018/04/01
3.1K17
机器学习之从极大似然估计到最大熵原理以及EM算法详解
积分上限函数_定积分的基本计算方法
设函数 f(x) 在区间 [a,b] 上可积,对任意的 x \in [a,b],做变上限积分
全栈程序员站长
2022/09/20
2.1K0
Deep Learning Chapter01:机器学习中概率论
好久不见,大家好,我是北山啦。机器学习当中需要用到许多的数学知识,如今博主又要继续踏上深度学习的路程,所以现在在网上总结了相关的考研数学和机器学习中常见相关知识如下,希望对大家有所帮助。
北山啦
2022/10/31
3920
Deep Learning Chapter01:机器学习中概率论
线性代数 - 1 - 基础知识
线性代数,基础知识,温故知新。 定义 向量: 向量默认为列向量: image.png 矩阵 \mathbf{X} \in \mathbb{R}^{m \times n},表示为: image.png 范数 向量范数 1-范数 各个元素的绝对值之和 image.png 2-范数 每个元素的平方和再开平方根 image.png p-范数 image.png 其中正整数p≥1,并且有 \lim _{p \rightarrow \infty}\|X\|_{p}=\m
为为为什么
2022/08/05
2.2K0
线性代数 - 1 - 基础知识
蒙特卡洛(Monte Carlo)方法
由于向纸上投针是完全随机的, 因此用二维随机变量 (X, Y) 来确定针在纸上的具体位置。其中:
为为为什么
2022/08/05
1.5K0
蒙特卡洛(Monte Carlo)方法
函数与微分
f(x)在点x_{0}处可导 \iff f(x)在点x_{0}处左、右导数皆存在且相等。
宋天伦
2020/07/16
8450
机器学习之从极大似然估计到最大熵原理以及EM算法详解
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_35512245/article/details/78774972
大黄大黄大黄
2018/09/14
1.5K0
机器学习之从极大似然估计到最大熵原理以及EM算法详解
数据科学基础(六) 参数估计
📚 文档目录 随机事件及其概率 随机变量及其分布 期望和方差 大数定律与中心极限定理 数理统计的基本概念 参数估计 假设检验 多维 回归分析和方差分析 降维 6.1. 参数的点估计 总体分布 X 的分布形式已知,未知的只是分布中的参数,要估计的只是参数或者参数的某一函数. 6.1.1. 矩估计法 公式 样本矩 总体矩 注意: 样本阶中的计算都是 n 而不会用到样本方差 S^2 6.1.2. 极大似然估计 估计参数值,使得出现
Rikka
2022/01/19
7970
数据科学基础(六) 参数估计
最速下降法收敛速度快还是慢_最速下降法是全局收敛算法吗
摘自《数值最优化方法》 \qquad 已知 设步长为 α \alpha α,下降方向为 d d d, f ( x k + α d ) f(x_{k}+\alpha d) f(xk​+αd)在 x k x_{k} xk​的 T a y l o r Taylor Taylor展示为 f ( x k + 1 ) = f ( x k + α d ) = f ( x k ) + α g k T d + O ( ∣ ∣ α d ∣ ∣ 2 ) f(x_{k+1})=f(x_{k}+\alpha d)=f(x_{k})+\alpha g_{k}^{T}d+O(||\alpha d||^{2}) f(xk+1​)=f(xk​+αd)=f(xk​)+αgkT​d+O(∣∣αd∣∣2)为使函数值下降,下降方向满足 g k T d &lt; 0 g_{k}^{T}d&lt;0 gkT​d<0 \qquad 收敛性和收敛速度 收敛性 算法产生的点阵 { x k } \{x_{k}\} { xk​}在某种范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣⋅∣∣意义下满足 l i m k → ∞ ∣ ∣ x k − x ∗ ∣ ∣ = 0 \mathop{lim}\limits_{k\to\infty}||x_{k}-x^{*}||=0 k→∞lim​∣∣xk​−x∗∣∣=0称算法是收敛的,当从任意初始点出发时,都能收敛到 x ∗ x^{*} x∗称为具有全局收敛性,仅当初始点与 x ∗ x_{*} x∗​充分接近时才能收敛到 x ∗ x^{*} x∗称算法具有局部收敛性。 \qquad 收敛速度(已知收敛):若 l i m k → ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = a \mathop{lim}\limits_{k\to\infty}\frac{||x_{k+1}-x^{*}||}{||x_{k}-x^{*}||}=a k→∞lim​∣∣xk​−x∗∣∣∣∣xk+1​−x∗∣∣​=a \qquad 当 0 &lt; a &lt; 1 0&lt;a&lt;1 0<a<1时,迭代点列 { x k } \{x_{k}\} { xk​}的收敛速度是线性的,这时算法称为线性收敛。当 a = 0 a=0 a=0时, { x k } \{x_{k}\} { xk​}的收敛速度是超线性的,称为超线性收敛。 \qquad 二阶收敛:若 l i m k → ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ 2 = a \mathop{lim}\limits_{k\to\infty}\frac{||x_{k+1}-x^{*}||}{||x_{k}-x^{*}||^{2}}=a k→∞lim​∣∣xk​−x∗∣∣2∣∣xk+1​−x∗∣∣​=a \qquad a a a为任意常数,迭代点列 { x k } \{x_{k}\} { xk​}的收敛速度是二阶的,这时算法称为二阶收敛。超线性收敛和二阶收敛的收敛速度较快,是理想的收敛速度。 \qquad 负梯度法和牛顿 ( N e w t o n ) (Newton) (Newton)型方法 N e w t o n Newton Newton型方法特殊情形的一种负梯度方法—最速下降法。首先下降方向满足 g k T d &lt; 0 g_{k}^{T}d&lt;0 gkT​d<0,为使 ∣ g k d ∣ |g_{k}d| ∣gk​d∣达到最大值,则由 C a u c h y − S c h w a r z Cauchy-Schwarz Cauchy−Schwarz不等式 ∣ g k T d ∣ ≤ ∣ ∣ g k ∣ ∣ ∣ ∣ d ∣ ∣ |g_{k}^{T}d|\leq||g_{k}||||d|| ∣gkT​d∣≤∣∣gk​∣∣∣∣d∣∣知当且仅当 d = d k = − g k / ∣ ∣ g k ∣ ∣ d=d_{k}=-g_{k}/||g_{k}|| d=dk​=−gk​/∣∣gk​∣∣时,等式成立, g k T d g_{k}^{T}d gkT​d达到最小。考虑在 d k d_{k} dk​方向上的步长,取其负梯度方向即 d k = − g k d_{k}=-g_{k} dk​=−gk​。 \qquad 收敛性分析 1. 给定 G G G度量下的范数定义,给出 K a n t o r o v i c h Kantorovich Kantorovich不等式。定义 设 G ∈ R n × n G\in\mathbb{R}^{n\times n} G∈Rn×n对称正定, u , v ∈ R n u,v\in\mathbb{R}^{n} u,v∈Rn则 u u u与 v v
全栈程序员站长
2022/11/16
6020
Spatial Transformer Networks(STN)详解
  普通的CNN能够显示的学习平移不变性,以及隐式的学习旋转不变性,但attention model 告诉我们,与其让网络隐式的学习到某种能力,不如为网络设计一个显式的处理模块,专门处理以上的各种变换。因此,DeepMind就设计了Spatial Transformer Layer,简称STL来完成这样的功能。
全栈程序员站长
2022/11/07
2.2K0
Spatial Transformer Networks(STN)详解
相关推荐
图解AI数学基础 | 微积分与最优化
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文