我尝试使用Google Colab在我自己的数据集上训练YOLO_v4,但遇到了下一个错误:
CUDA status Error: file: ./src/blas_kernels.cu : () : line: 841 : build time: Oct 9 2020 - 12:04:13
CUDA Error: no kernel image is available for execution on the device
CUDA Error: no kernel image is available for execution on the device: File exists
darknet: ./src/utils.c:325: error: Assertion `0' failed.
CPU times: user 58 ms, sys: 12.4 ms, total: 70.4 ms
Wall time: 15.4 s
我已经检查了我的代码,但找不到错误。然后我用我使用的例子(https://colab.research.google.com/drive/1cbzkKcACQPzLXuBYH7KPOh73Ko8xdUPn#scrollTo=6miYFbvExqMd)运行了Google Colab笔记本。当我执行单元格时:
%%time
!./darknet detector train data/obj.data cfg/custom-yolov4-detector.cfg -dont_show -map #./backup/custom-yolov4-detector_last.weights
#If you get CUDA out of memory adjust subdivisions above!
#adjust max batches down for shorter training above
此错误有时会出现在do not。我很困惑..。我认为这与我所连接的GPU的可用性或类型有关。有什么建议吗?
发布于 2021-02-23 10:49:48
检查此链接并下载darknet,就像这里的enter link description here一样
然后创建一个yolov4.conf文件,并根据您的类标签数量对其进行配置。您可以在此处找到此配置的示例:enter link description here
https://stackoverflow.com/questions/64280100
复制