CV学习史

56 篇文章
14 人订阅

机器学习

范中豪

欠拟合和过拟合出现原因及解决方案

机器学习的基本问题是利用模型对数据进行拟合,学习的目的并非是对有限训练集进行正确预测,而是对未曾在训练集合出现的样本能够正确预测。模型对训练集数据的误差称为经验...

12120
范中豪

AD预测论文研读系列2

多模生物学、影像学和神经心理学标记物已经展示了区分阿尔茨海默病(AD)患者和认知正常的老年人的良好表现。然而,早期预测轻度认知功能障碍(MCI)患者何时和哪些会...

8410
范中豪

利用卷积神经网络进行阿尔茨海默病分类的神经影像模式融合 论文研读笔记

阿尔茨海默病(AD)分类的自动化方法具有巨大的临床益处,并可为防治该疾病提供见解。深层神经网络算法通常使用诸如MRI和PET的神经学成像数据,但是还没有对这些模...

12010
范中豪

GoogLeNetv1 论文研读笔记

研究提出了一个名为“Inception”的深度卷积神经网结构,其目标是将分类、识别ILSVRC14数据集的技术水平提高一个层次。这一结构的主要特征是对网络内部计...

12420
范中豪

AD分类论文研读(1)

原文链接 摘要 将cv用于研究需要大量的训练图片,同时需要对深层网络的体系结构进行仔细优化。该研究尝试用转移学习来解决这些问题,使用从大基准数据集组成的自然...

12440
范中豪

Deep learning with Python 学习笔记(11)

机器学习(machine learning)是人工智能的一个特殊子领域,其目标是仅靠观察训练数据来自动开发程序[即模型(model)]。将数据转换为程序的这个过...

10020
范中豪

Deep learning with Python 学习笔记(10)

机器学习模型能够对图像、音乐和故事的统计潜在空间(latent space)进行学习,然后从这个空间中采样(sample),创造出与模型在训练数据中所见到的艺术...

9420
范中豪

Deep learning with Python 学习笔记(7)

卷积神经网络能够进行卷积运算,从局部输入图块中提取特征,并能够将表示模块化,同时可以高效地利用数据。这些性质让卷积神经网络在计算机视觉领域表现优异,同样也让它对...

6910
范中豪

Deep learning with Python 学习笔记(6)

本节介绍循环神经网络及其优化 循环神经网络(RNN,recurrent neural network)处理序列的方式是,遍历所有序列元素,并保存一个状态(st...

9420
范中豪

Deep learning with Python 学习笔记(1)

Python 的 Keras 库来学习手写数字分类,将手写数字的灰度图像(28 像素 ×28 像素)划分到 10 个类别 中(0~9) 神经网络的核心组件是...

9440
范中豪

小样本学习介绍

在大多数时候,你是没有足够的图像来训练深度神经网络的,这时你需要从小样本数据快速学习你的模型。

28920
范中豪

PCA降维

在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ...

15520

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励