专栏首页程序员一一涤生用python做时间序列预测一:初识概念

用python做时间序列预测一:初识概念

利用时间序列预测方法,我们可以基于历史的情况来预测未来的情况。比如共享单车每日租车数,食堂每日就餐人数等等,都是基于各自历史的情况来预测的。

什么是时间序列?

  • 时间序列,是指同一个变量在连续且固定的时间间隔上的各个数据点的集合,比如每5分钟记录的收费口车流量,或者每年记录的药物销量都是时间序列。

时间序列的类型

  • 根据时间间隔的不同,时间序列可以是按年度(Annual)、季度、月度、周、小时、分钟、秒等频率采集的序列。

时间序列的成分

  • 趋势(Trend),比如长期上涨或长期下跌。
  • 季节性(Seasonal),比如羽绒服的销量一般会在冬季更高,或者某家烧烤店的生意一般会在每周五和周六晚上更好。
  • 周期性(Cyclic),比如你时不时搞个大促,那么销量在那段时间就会比较好。
  • 误差。

什么是时间序列预测?

  • 就是用同一个变量的历史值预测未来值,或者除了历史值以外,还加入一些预测因子(又称外生变量)来预测未来值。前者称为单变量时间序列预测,后者称为多变量时间序列预测。
  • 比如,我们要预测某海滩下个月的的游客数量,除了用历史游客数量做预测外,还可以加入温度这个因子。那么只用历史游客数量做预测就是单变量时间预测,加入温度这个因子就是多变量时间预测,当然还可以加入其它合理的预测因子,比如该海滩的每月广告支出等。

一些简单的预测方法

均值法

所有未来的预测值等于历史数据的平均值。

朴素法

简单的将最后一次观测值作为未来的预测值。

季节性朴素法

相比朴素法,就是考虑了季节性,也就是说将同期的最后一次观测值作为本期的预测值,比如预测本周的数值,那么就将上周的周一观测值作为本周的周一预测值,上周的周二观测值作为本周的周二预测值,以此类推。

漂移法(drift )

在起始观测值和最后一次观测值之间画一条连接线,延伸到预测时间点,作为预测值,公式如下:

下面的2副图展示了上面四种方法的预测效果:

常用的时间序列预测法

  • Exponential smoothing 指数平滑 简单说就是用过去的观测值的加权平均值来作为预测值,权重随着与当前时刻的距离变远而呈指数衰减。
  • ARIMA 简单说就是用变量的自回归(AR)与历史预测误差的自回归(MA)构成的时间序列预测模型。
  • 基于深度学习的方法 简单说就是利用神经网络强大的学习能力,从时间序列历史数据中提取各种可能的特征,从而对未来进行预测。这部分的模型比较多,比如LSTM,GRU,TCN等。

注意,上述的方法并不能说谁一定比谁好,不同的预测场景下每个方法都有可能做出更好的预测,所以通常需要相互比较,以便做出更合理的预测。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 用python做时间序列预测四:平稳/非平稳时间序列

    1、序列的均值(mean)不应该是时间的函数(意思是不应该随时间变化),而应该是一个常数。下面的左图满足这个条件,而右图的均值受时间的变化影响。

    程序员一一涤生
  • BERT论文解读

    BERT的设计是通过在所有层中对左右上下文进行联合调节,来预先训练来自未标记文本的深层双向表示。

    程序员一一涤生
  • BERT论文解读

    BERT的设计是通过在所有层中对左右上下文进行联合调节,来预先训练来自未标记文本的深层双向表示。

    程序员一一涤生
  • 使用R语言进行时间序列(arima,指数平滑)分析

    您要分析时间序列数据的第一件事就是将其读入R,并绘制时间序列。您可以使用scan()函数将数据读入R,该函数假定连续时间点的数据位于包含一列的简单文本文件中。

    拓端
  • 再谈数据挖掘——时序预测初探

    1. 背景 先来看两个例子,下面两幅图展示了百度在趋势预测方面的应用案例,一个是世界杯期间的比赛输赢预测,另一个是北京各旅游景区的游客人数预测。 ? ? 这两...

    腾讯大数据
  • 数学建模学习GM(1,1)灰色预测模型

    1.灰色系统的定义: 灰色系统指既含有已知信息又含有未知信息的系统。 2.灰色预测模型的定义: 对灰色系统进行预测的模型。 灰色模型(Grey ...

    glm233
  • 【推荐】再谈数据挖掘——时序预测初探

    1. 背景 先来看两个例子,下面两幅图展示了百度在趋势预测方面的应用案例,一个是世界杯期间的比赛输赢预测,另一个是北京各旅游景区的游客人数预测。 ? ? 这两...

    小莹莹
  • 【干货!】统计学最常用的「数据分析方法」清单(下)

    根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体。

    1480
  • R语言从入门到精通:Day12

    从许多方面来看,回归分析都是统计学的核心。它其实是一个广义的概念,通指那些用一个或多个预测变量(也称自变量)来预测响应变量(也称因变量) 的方法。通常,回归分析...

    用户6317549
  • DeepMind丨深度学习最新生成记忆模型,远超RNN的GTMM

    【新智元导读】DeepMind 的最新研究成果,对广泛使用于语音识别、图像识别、语义理解等领域的深度学习人工网络RNN性能带来显著提升(substantiall...

    新智元

扫码关注云+社区

领取腾讯云代金券